More Statistical and Methodological Myths and Urban Legends : Doctrine, Verity and Fable in Organizational and Social Sciences

個数:
電子版価格
¥11,376
  • 電子版あり

More Statistical and Methodological Myths and Urban Legends : Doctrine, Verity and Fable in Organizational and Social Sciences

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 358 p.
  • 言語 ENG
  • 商品コード 9780415838986
  • DDC分類 150.287

Full Description

This book provides an up-to-date review of commonly undertaken methodological and statistical practices that are based partially in sound scientific rationale and partially in unfounded lore. Some examples of these "methodological urban legends" are characterized by manuscript critiques such as: (a) "your self-report measures suffer from common method bias"; (b) "your item-to-subject ratios are too low"; (c) "you can't generalize these findings to the real world"; or (d) "your effect sizes are too low."

What do these critiques mean, and what is their historical basis? More Statistical and Methodological Myths and Urban Legends catalogs several of these quirky practices and outlines proper research techniques. Topics covered include sample size requirements, missing data bias in correlation matrices, negative wording in survey research, and much more.

Contents

Part I: General Issues 1. Is Ours a Hard Science (And Do We Care)? Ronald S. Landis and José M. Cortina 2. Publication Bias: Understanding the Myths Concerning Threats to the Advancement of Science George C. Banks, Sven Kepes, and Michael A. McDanielPart II: Design Issues 3. Red-Headed No More: Tipping Points in Qualitative Research in Management Anne D. Smith, Laura T. Madden, and Donde Ashmos Plowman 4. Two Waves of Measurement Do Not a Longitudinal Study Make Robert E. Ployhart, and William I. MacKenzie Jr. 5. The Problem of Generational Change: Why Cross-Sectional Designs Are Inadequate for Investigating Generational Differences Brittany Gentile, Lauren A. Wood, Jean M. Twenge, Brian J. Hoffman, and W. Keith Campbell 6. Negatively Worded Items Negatively Impact Survey Research Dev K. Dalal and Nathan T. Carter 7. Missing Data Bias: Exactly How Bad Is Pairwise Deletion? Daniel A. Newman and Jonathan M. Cottrell 8. Size Matters... Just Not in the Way that You Think: Myths Surrounding Sample Size Requirements for Statistical Analyses Scott Tonidandel, Eleanor B. Williams, and James M. LeBretonPart III: Analytical Issues 9. Weight a Minute... What You See in a Weighted Composite Is Probably Not What You Get! Frederick L. Oswald, Dan J. Putka, and Jisoo Ock 10. Debunking Myths and Urban Legends about How to Identify Influential Outliers Herman Aguinis and Harry Joo 11. Pulling the Sobel Test Up By Its Bootstraps Joel Koopman, Michael Howe, and John R. HollenbeckPart IV: Inferential Issues 12. "The" Reliability of Job Performance Ratins Equals 0.52 Dan J. Putka and Brian J. Hoffman 13. Use of "Independent" Meausres Does Not Solve the Shared Method Bias Problem Charles E. Lance and Allison B. Siminovsky 14. The Not-So-Direct Cross-Level Direct Effect Alexander C. LoPilato and Robert J. Vandenberg 15. Aggregation Aggravation: The Fallacy of the Wrong Level Revisited David J. Woehr, Andrew C. Loignon, and Paul Schmidt 16. The Practical Importance of Meaurement Invariance Neal Schmitt and Abdifatah A. Ali

最近チェックした商品