Algebraic Surfaces and Holomorphic Vector Bundles (1998. IX, 328 p. 24,5 cm)

個数:

Algebraic Surfaces and Holomorphic Vector Bundles (1998. IX, 328 p. 24,5 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 250 p.
  • 商品コード 9780387983615

基本説明

Contents: Curves on a Surface; Coherent Sheaves; Birational Geometry; Stability; Some examples of surfaces; Vector Bundles over Ruled Surfaces; An Introduction to Elliptic Surfaces; Vector Bundles over Elliptic Surfaces, and more.

Full Description

This book is based on courses given at Columbia University on vector bun­ dles (1988) and on the theory of algebraic surfaces (1992), as well as lectures in the Park City lIAS Mathematics Institute on 4-manifolds and Donald­ son invariants. The goal of these lectures was to acquaint researchers in 4-manifold topology with the classification of algebraic surfaces and with methods for describing moduli spaces of holomorphic bundles on algebraic surfaces with a view toward computing Donaldson invariants. Since that time, the focus of 4-manifold topology has shifted dramatically, at first be­ cause topological methods have largely superseded algebro-geometric meth­ ods in computing Donaldson invariants, and more importantly because of and Witten, which have greatly sim­ the new invariants defined by Seiberg plified the theory and led to proofs of the basic conjectures concerning the 4-manifold topology of algebraic surfaces. However, the study of algebraic surfaces and the moduli spaces ofbundles on them remains a fundamen­ tal problem in algebraic geometry, and I hope that this book will make this subject more accessible. Moreover, the recent applications of Seiberg­ Witten theory to symplectic 4-manifolds suggest that there is room for yet another treatment of the classification of algebraic surfaces. In particular, despite the number of excellent books concerning algebraic surfaces, I hope that the half of this book devoted to them will serve as an introduction to the subject.

Contents

1 Curves on a Surface.- Invariants of a surface.- Divisors on a surface.- Adjunction and arithmetic genus.- The Riemann-Roch formula.- Algebraic proof of the Hodge index theorem.- Ample and nef divisors.- Exercises.- 2 Coherent Sheaves.- What is a coherent sheaf?.- A rapid review of Chern classes for projective varieties.- Rank 2 bundles and sub-line bundles.- Elementary modifications.- Singularities of coherent sheaves.- Torsion free and reflexive sheaves.- Double covers.- Appendix: some commutative algebra.- Exercises.- 3 Birational Geometry.- Blowing up.- The Castelnuovo criterion and factorization of birational morphisms.- Minimal models.- More general contractions.- Exercises.- 4 Stability.- Definition of Mumford-Takemoto stability.- Examples for curves.- Some examples of stable bundles on ?2.- Gieseker stability.- Unstable and semistable sheaves.- Change of polarization.- The differential geometry of stable vector bundles.- Exercises.- 5 Some Examples of Surfaces.- Rational ruledsurfaces.- General ruled surfaces.- Linear systems of cubics.- An introduction toK3 surfaces.- Exercises.- 6 Vector Bundles over Ruled Surfaces.- Suitable ample divisors.- Ruled surfaces.- A brief introduction to local and global moduli.- A Zariski open subset of the moduli space.- Exercises.- 7 An Introduction to Elliptic Surfaces.- Singular fibers.- Singular fibers of elliptic fibrations.- Invariants and the canonical bundle formula.- Elliptic surfaces with a section and Weierstrass models.- More general elliptic surfaces.- The fundamental group.- Exercises.- 8 Vector Bundles over Elliptic Surfaces.- Stable bundles on singular curves.- Stable bundles of odd fiber degree over elliptic surfaces.- A Zariski open subset of the moduli space.- An overview of Donaldson invariants.- The 2-dimensional invariant.- Moduli spaces via extensions.- Vector bundles with trivial determinant.- Even fiber degree and multiple fibers.- Exercises.- 9 Bogomolov's Inequality and Applications.- Statement ofthe theorem.- The theorems of Bombieri and Reider.- The proof of Bogomolov's theorem.- Symmetric powers of vector bundles on curves.- Restriction theorems.- Appendix: Galois descent theory.- Exercises.- 10 Classification of Algebraic Surfaces and of Stable.- Bundles.- Outline of the classification of surfaces.- Proof of Castelnuovo's theorem.- The Albanese map.- Proofs of the classification theorems for surfaces.- The Castelnuovo-deFranchis theorem.- Classification of threefolds.- Classification of vector bundles.- Exercises.- References.

最近チェックした商品