計算統計学<br>Computational Statistics (Statistics and Computing)

個数:

計算統計学
Computational Statistics (Statistics and Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 727 p.
  • 商品コード 9780387981437

基本説明

Describes computationally-intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition.

Full Description

Computational inference has taken its place alongside asymptotic inference and exact techniques in the standard collection of statistical methods. Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally-intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.

The book assumes an intermediate background in mathematics, computing, and applied and theoretical statistics. The first part of the book, consisting of a single long chapter, reviews this background material while introducing computationally-intensive exploratory data analysis and computational inference.

The six chapters in the second part of the book are on statistical computing. This part describes arithmetic in digital computers and how the nature of digital computations affects algorithms used in statistical methods. Building on the first chapters on numerical computations and algorithm design, the following chapters cover the main areas of statistical numerical analysis, that is, approximation of functions, numerical quadrature, numerical linear algebra, solution of nonlinear equations, optimization, and random number generation.

The third and fourth parts of the book cover methods of computational statistics, including Monte Carlo methods, randomization and cross validation, the bootstrap, probability density estimation, and statistical learning.

The book includes a large number of exercises with some solutions provided in an appendix.

Contents

Preliminaries.- Mathematical and Statistical Preliminaries.- Statistical Computing.- Computer Storage and Arithmetic.- Algorithms and Programming.- Approximation of Functions and Numerical Quadrature.- Numerical Linear Algebra.- Solution of Nonlinear Equations and Optimization.- Generation of Random Numbers.- Methods of Computational Statistics.- Graphical Methods in Computational Statistics.- Tools for Identification of Structure in Data.- Estimation of Functions.- Monte Carlo Methods for Statistical Inference.- Data Randomization, Partitioning, and Augmentation.- Bootstrap Methods.- Exploring Data Density and Relationships.- Estimation of Probability Density Functions Using Parametric Models.- Nonparametric Estimation of Probability Density Functions.- Statistical Learning and Data Mining.- Statistical Models of Dependencies.

最近チェックした商品