Modern Analysis and Topology (Universitext)

個数:

Modern Analysis and Topology (Universitext)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9780387979861
  • DDC分類 515.13

基本説明

The purpose of this book is to provide an integrated development of modern analysis and topology through the integrating vehicle of uniform spaces.

Full Description

The purpose of this book is to provide an integrated development of modern analysis and topology through the integrating vehicle of uniform spaces. It is intended that the material be accessible to a reader of modest background. An advanced calculus course and an introductory topology course should be adequate. But it is also intended that this book be able to take the reader from that state to the frontiers of modern analysis and topology in-so-far as they can be done within the framework of uniform spaces. Modern analysis is usually developed in the setting of metric spaces although a great deal of harmonic analysis is done on topological groups and much offimctional analysis is done on various topological algebraic structures. All of these spaces are special cases of uniform spaces. Modern topology often involves spaces that are more general than uniform spaces, but the uniform spaces provide a setting general enough to investigate many of the most important ideas in modern topology, including the theories of Stone-Cech compactification, Hewitt Real-compactification and Tamano-Morita Para­ compactification, together with the theory of rings of continuous functions, while at the same time retaining a structure rich enough to support modern analysis.

Contents

1: Metric Spaces.- 1.1 Metric and Pseudo-Metric Spaces.- 1.2 Stone's Theorem.- 1.3 The Metrization Problem.- 1.4 Topology of Metric Spaces.- 1.5 Uniform Continuity and Uniform Convergence.- 1.6 Completeness.- 1.7 Completions.- 2: Uniformities.- 2.1 Covering Uniformities.- 2.2 Uniform Continuity.- 2.3 Uniformizability and Complete Regularity.- 2.4 Normal Coverings.- 3: Transfinite Sequences.- 3.1 Background.- 3.2 Transfinite Sequences in Uniform Spaces.- 3.3 Transfinite Sequences and Topologies.- 4: Completeness, Cofinal Completeness And Uniform Paracompactness.- 4.1 Introduction.- 4.2 Nets.- 4.3 Completeness, Cofinal Completeness and Uniform Paracompactness.- 4.4 The Completion of a Uniform Space.- 4.5 The Cofinal Completion or Uniform Paracompactification.- 5: Fundamental Constructions.- 5.1 Introduction.- 5.2 Limit Uniformities.- 5.3 Subspaces, Sums, Products and Quotients.- 5.4 Hyperspaces.- 5.5 Inverse Limits and Spectra.- 5.6 The Locally Fine Coreflection.- 5.7 Categories and Functors.- 6: Paracompactifications.- 6.1 Introduction.- 6.2 Compactifications.- 6.3 Tamano's Completeness Theorem.- 6.4 Points at Infinity and Tamano's Theorem.- 6.5 Paracompactifications.- 6.6 The Spectrum of ?X.- 6.7 The Tamano-Morita Paracompactification.- 7: Realcompactifications.- 7.1 Introduction.- 7.2 Realcompact Spaces.- 7.3 Realcompactifications.- 7.4 Realcompact Spaces and Lindelöf Spaces.- 7.5 Shirota's Theorem.- 8: Measure And Integration.- 8.1 Introduction.- 8.2 Measure Rings and Algebras.- 8.3 Properties of Measures.- 8.4 Outer Measures.- 8.5 Measurable Functions.- 8.6 The Lebesgue Integral.- 8.7 Negligible Sets.- 8.8 Linear Functional and Integrals.- 9: Haar Measure In Uniform Spaces.- 9.1 Introduction.- 9.2 Haar Integrals and Measures.- 9.3 Topological Groups andUniqueness of Haar Measures.- 10: Uniform Measures.- 10.1 Introduction.- 10.2 Prerings and Loomis Contents.- 10.3 The Haar Functions.- 10.4 Invariance and Uniqueness of Loomis Contents and Haar Measures.- 10.5 Local Compactness and Uniform Measures.- 11: Spaces Of Functions.- 11.1 LP -spaces.- 11.2 The Space L2(?) and Hilbert Spaces.- 11.3 The Space LP(?) and Banach Spaces.- 11.4 Uniform Function Spaces.- 12: Uniform Differentiation.- 12.1 Complex Measures.- 12.2 The Radon-Nikodym Derivative.- 12.3 Decompositions of Measures and Complex Integration.- 12.4 The Riesz Representation Theorem.- 12.5 Uniform Derivatives of Measures.

最近チェックした商品