複素解析(テキスト)<br>Complex Analysis (Undergraduate Texts in Mathematics) (1st ed. 2001. Corr. 2nd printing)

個数:

複素解析(テキスト)
Complex Analysis (Undergraduate Texts in Mathematics) (1st ed. 2001. Corr. 2nd printing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 478 p., 184 figs.
  • 商品コード 9780387950693

基本説明

Chapters begin with the fundamentals at the undergraduate level, finishing with material designed to complete the coverage of all background necessary for passing PhD qualifying exams. Topics: Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, etc.

Full Description

An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Contents

* The Complex Plane and Elementary Functions * Analytic Functions * Line Integrals and Harmonic Functions * Complex Integration and Analyticity * Power Series * Laurent Series and Isolated Singularities * The Residue Calculus * The Logarithmic Integral * The Schwarz Lemma and Hyperbolic Geometry * Harmonic Functions and the Reflection Principle * Conformal Mapping * Compact Families of Meromorphic Functions * Approximation Theorems * Some Special Functions * The Dirichlet Problem * Riemann Surfaces