How Does One Cut a Triangle? (2ND)

個数:

How Does One Cut a Triangle? (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 155 p./サイズ 80 illus.
  • 言語 ENG
  • 商品コード 9780387746500

基本説明

Shows how different areas of mathematics can be intertwined to solve a given problem. Soifer brings together geometry, algebra, trigonometry, linear algebra, and rings in a juxtaposition of different mathematical areas that enables mathematics to come alive. In the process the reader is given a taste of what mathematics can do and how mathematicians go about their research.
Originally published by the author, 1990.

Full Description

This second edition of Alexander Soifer's How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.

How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of problems, such as a pool table problem, a fifty-dollar problem, a five-point problem, and a joint problem. By proving these examples, the author demonstrates that research is a collection of mathematical ideas that have been developed throughout the course of history.

The author brings mathematics alive by giving the reader a taste of what mathematicians do. His book presents open problems that invite the reader to play the role of the mathematician. By doing so, the author skillfully inspires the discovery of uncharted solutions using his solutions as a guide.

Contents

The Original Book.- A Pool Table, Irrational Numbers, and Integral Independence.- How Does One Cut a Triangle? I.- Excursions in Algebra.- How Does One Cut a Triangle? II.- Excursion in Trigonometry.- Is There Anything Beyond the Solution?.- Pursuit of the Best Result.- Convex Figures and the Function S().- Paul Erd#x0151;s: Our Joint Problems.- Convex Figures and Erd#x0151;os#x2019; Function S().- Developments of the Subsequent 20 Years.- An Alternative Proof of Grand Problem II.- Mikl#x00F3;s Laczkovich on Cutting Triangles.- Matthew Kahle on the Five-Point Problem.- Soifer#x2019;s One-Hundred-Dollar Problem and Mitya Karabash.- Coffee Hour and the Conway#x2013;Soifer Cover-Up.- Farewell to the Reader.

最近チェックした商品