Compendium of Theoretical Physics

個数:

Compendium of Theoretical Physics

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 540 p./サイズ 80 illus.
  • 言語 ENG
  • 商品コード 9780387257990

基本説明

Suited as an accompanying textbook.

Full Description

Mechanics, Electrodynamics, Quantum Mechanics, and Statistical Mechanics and Thermodynamics comprise the canonical undergraduate curriculum of theoretical physics. In Compendium of Theoretical Physics, Armin Wachter and Henning Hoeber offer a concise, rigorous and structured overview that will be invaluable for students preparing for their qualifying examinations, readers needing a supplement to standard textbooks, and research or industrial physicists seeking a bridge between extensive textbooks and formula books.

The authors take an axiomatic-deductive approach to each topic, starting the discussion of each theory with its fundamental equations. By subsequently deriving the various physical relationships and laws in logical rather than chronological order, and by using a consistent presentation and notation throughout, they emphasize the connections between the individual theories. The reader's understanding is then reinforced with exercises, solutions and topic summaries.

Unique Features:

Every topic is reviewed axiomatically-deductively and then reinforced through exercises, solutions and summaries

Each subchapter ends with a set of applications, making the Compendium an ideal review of theoretical physics for physicists working in industry or research

A Mathematical Appendix covers vector operations, integral theorems, partial differential quotients, complete function systems, Fourier analysis, Bessel functions, spherical Bessel functions, Legendre functions, Legendre polynomials and spherical harmonics

Armin Wachter holds a Ph.D. in Physics from the John von Neumann Institute for Computing (NIC) / Research Centre of Jülich, Germany. His research interests include theoretical elementary particle physics, heavy quark physics, heavy meson spectroscopy, algorithms on parallel computers, andlattice gauge theory. He is presently writing a textbook on relativistic quantum mechanics for Springer.

Henning Hoeber received his Ph.D. in Physics from the University of Edinburgh, Scotland and has since held research positions at the John von Neumann Institute for Computing (NIC) / Research Centre of Jülich, Germany and the University of Wuppertal, Germany. His research interests include elementary particle physics, lattice gauge theory, and computational physics, and since 1998 he has done extensive work in the fields of seismic processing, time series analysis, statistical and transform methods for seismic signal processing, and elastic wave propagation.

Contents

From the Contents:

Mechanics: Newtonian Mechanics.- Lagrangian Mechanics.- Hamiltonian Mechanics.- Motion of Rigid Bodies.- Central Forces.- Relativistic Mechanics.- Electrodynamics: Formalism of Electrodynamics.- Solutions of Maxwell's Equations in the Form of Potentials.- Lorentz Covariant Formulation of Electrodynamics.- Radiation Theory.- Time-Independent Electrodynamics.- Electrodynamics in Matter.- Electromagnetic Waves.- Lagrange Formalism in Electrodynamics.- Quantum Mechanics: Mathematical Foundations of Quantum Mechanics.- Formulation of Quantum Theory.- One-Dimensional Systems.- Quantum Mechanical Angular Momenta.- Schrödinger Equation in Three Dimensions.- Electromagnetic Interactions.- Perturbation Theory and Real Hydrogen Atom.- Atomic Transitions.- N-Particle Systems.- Scattering Theory.- Statistical Physics and Thermodynamics: Foundations of Statistical Physics.- Ensemble Theory I: Microcanonical Ensemble and Entropy.- Ensemble Theory II: Canonical and Grand Canonical Ensemble.- Entropy and Information Theory.- Thermodynamics.- Classical Maxwell-Boltzmann Statistics.- Quantum Statistics.

最近チェックした商品