Heavy-Tail Phenomena : Probabilistic and Statistical Modeling (Springer Series in Operations Research and Financial Engineering)

個数:

Heavy-Tail Phenomena : Probabilistic and Statistical Modeling (Springer Series in Operations Research and Financial Engineering)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9780387242729

Full Description

This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. Heavy tails are characteristic of many phenomena where the probability of a single huge value impacts heavily. Record-breaking insurance losses, financial-log returns, files sizes stored on a server, transmission rates of files are all examples of heavy-tailed phenomena. Key features: * Unique text devoted to heavy-tails * Emphasizes both probability modeling and statistical methods for fitting models. Most treatments focus on one or the other but not both * Presents broad applicability of heavy-tails to the fields of data networks, finance (e.g., value-at- risk), insurance, and hydrology * Clear, efficient and coherent exposition, balancing theory and actual data to show the applicability and limitations of certain methods * Examines in detail the mathematical properties of the methodologies as well as their implementation in Splus or R statistical languages * Exposition driven by numerous examples and exercises Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use (or at least to learn) a statistics package such as R or Splus.
This work will serve second-year graduate students and researchers in the areas of applied mathematics, statistics, operations research, electrical engineering, and economics.

最近チェックした商品