An Introduction to Rare Event Simulation (Springer Series in Statistics) (2004. XI, 260 p. w. 50 figs. 24,5 cm)

個数:

An Introduction to Rare Event Simulation (Springer Series in Statistics) (2004. XI, 260 p. w. 50 figs. 24,5 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 270 p.
  • 商品コード 9780387200781

Full Description

This book is an attempt to present a unified theory of rare event simulation and the variance reduction technique known as importance sampling from the point of view of the probabilistic theory of large deviations. This framework allows us to view a vast assortment of simulation problems from a single unified perspective. It gives a great deal of insight into the fundamental nature of rare event simulation. Unfortunately, this area has a reputation among simulation practitioners of requiring a great deal of technical and probabilistic expertise. In this text, I have tried to keep the mathematical preliminaries to a minimum; the only prerequisite is a single large deviation theorem dealing with sequences of Rd­ valued random variables. (This theorem and a proof are given in the text.) Large deviation theory is a burgeoning area of probability theory and many of the results in it can be applied to simulation problems. Rather than try to be as complete as possible in the exposition of all possible aspects of the available theory, I have tried to concentrate on demonstrating the methodology and the principal ideas in a fairly simple setting. Madison, Wisconsin 2003 James Antonio Bucklew Contents 1. Random Number Generation . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . 1.1 Uniform Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Nonuniform Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 The Inversion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 The Acceptance---Rejection Method . . . . . . . . . . . . 10 . . . . . 1.3 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . 13 . . . . . . . . . . . 1.3.1 Inversion by Truncation of a ContinuousAnalog. . . . . . 14 1.3.2 Acceptance---Rejection . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . .

Contents

1. Random Number Generation.- 2. Stochastic Models.- 3. Large Deviation Theory.- 4. Importance Sampling.- 5. The Large Deviation Theory of Importance Sampling Estimators.- 6. Variance Rate Theory of Conditional Importance Sampling Estimators.- 7. The Large Deviations of Bias Point Selection.- 8. Chernoff's Bound and Asymptotic Expansions.- 9. Gaussian Systems.- 10. Universal Simulation Distributions.- 11. Rare Event Simulation for Level Crossing and Queueing Models.- 12. Blind Simulation.- 13. The (Over-Under) Biasing Problem in Importance Sampling.- 14. Tools and Techniques for Importance Sampling.- A. Convex Functions and Analysis.- B. A Covering Lemma.- C. Pseudo-Random Number Generator Programs.- References.

最近チェックした商品