Four-Dimensional Manifolds and Projective Structure

個数:
電子版価格
¥11,600
  • 電子版あり
  • ポイントキャンペーン

Four-Dimensional Manifolds and Projective Structure

  • ウェブストア価格 ¥30,553(本体¥27,776)
  • Chapman & Hall/CRC(2023/07発売)
  • 外貨定価 US$ 140.00
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 1,385pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9780367900427
  • DDC分類 514.34

Full Description

Four-Dimensional Manifolds and Projective Structure may be considered first as an introduction to differential geometry and, in particular, to 4-dimensional manifolds, and secondly as an introduction to the study of projective structure and projective relatedness in manifolds.

The initial chapters mainly cover the elementary aspects of set theory, linear algebra, topology, Euclidean geometry, manifold theory and differential geometry, including the idea of a metric and a connection on a manifold and the concept of curvature. After this, the author dives deeper into 4-dimensional manifolds and, in particular, the positive definite case for the metric. The book also covers Lorentz signature and neutral signature in detail and introduces, and makes use of, the holonomy group of such a manifold for connections associated with metrics of each of these three possible signatures. A brief interlude on some key aspects of geometrical symmetry precedes a detailed description of projective relatedness, that is, the relationship between two symmetric connections (and between their associated metrics) which give rise to the same geodesic paths.

Features:




Offers a detailed, straightforward discussion of the basic properties of (4-dimensional) manifolds.
Introduces holonomy theory, and makes use of it, in a novel manner.
Suitable for postgraduates and researchers, including master's and PhD students.

Contents

1. Algebra, Topology and Geometry. 1.1. Notation. 1.2. Groups. 1.3. Vector Spaces and Linear Transformations. 1.4. Dual Spaces and Bilinear Forms. 1.5. Eigen-structure, Jordan Canonical Forms and Segre Types. 1.6. Lie algebras. 1.7. Topology. 1.8. Euclidean Geometry. 2. Manifold Theory. 2.1. Manifolds. 2.2. The Manifold Topology. 2.3. Vectors, Tensors and their Associated Bundles. 2.4. Vector and Tensor Fields. 2.5. Derived Maps and Pullbacks. 2.6. Integral Curves of Vector Fields. 2.7. Submanifolds and Quotient Manifolds. 2.8. Distributions. 2.9. Linear Connections and Curvature. 2.10. Lie Groups and Lie Algebras. 2.11. The Exponential Map for G. 2.12. Covering Manifolds. 2.13. Holonomy Theory. 3. Four-Dimensional Manifolds. 3.1. Metrics on 4-dimensional Manifolds. 3.2. The Connection, the Curvature and Associated Tensors. 3.3. Algebraic Remarks, Bivectors and Duals. 3.4. The Positive Definite Case and Tensor Classification. 3.5. The Curvature and Weyl Conformal Tensor. 3.6. The Lie Algebra o(4). 3.7. The holonomy structure of (M,g). 3.8. Curvature and Metric. 3.9. Sectional Curvature. 3.10. The Ricci Flat Case. 4. Four-Dimensional Lorentz Manifolds. 4.1. Lorentz Tangent Space Geometry. 4.2. Classification of Second Order Tensors. 4.3. Bivectors in Lorentz Signature. 4.4. The Lorentz Algebra o(1,3) and Lorentz Group. 4.5. The Curvature and Weyl Conformal Tensors. 4.6. Curvature Structure. 4.7. Sectional Curvature. 4.8. The Ricci Flat (Vacuum) Case. 5. Four-Dimensional Manifolds of Neutral Signature. 5.1. Neutral Tangent Space Geometry. 5.2. Algebra and Geometry of Bivectors. 5.3. Classification of Symmetric Second Order Tensors. 5.4. Classification of Bivectors. 5.5. The Lie Algebra o(2,2). 5.6. The Curvature Tensor. 5.7. The Weyl Conformal Tensor I. 5.8. The Weyl Conformal Tensor II. 5.9. Curvature Structure. 5.10. Sectional Curvature. 5.11. The Ricci-Flat Case. 5.12. Algebraic Classification Revisited. 6. A Brief Discussion of Geometrical Symmetry. 6.1. Introduction. 6.2. The Lie Derivative. 6.3. Symmetries of the Metric Tensor. 6.4. Affine and Projective Symmetry. 6.5. Orbits and isotropy algebras for K(M). 7. Projective Relatedness. 7.1. Recurrence and Holonomy. 7.2. Projective Relatedness. 7.3. The Sinjukov Transformation. 7.4. Introduction of the Curvature Tensor. 7.5. Einstein Spaces. 7.6. Projective Relatedness and Geometrical Symmetry. 7.7. The 1-form ψ. 7.8. Projective Relatedness in 4-dimensional Manifolds.

最近チェックした商品