Ordinal Data Analysis : Statistical Perspective with Applications

個数:

Ordinal Data Analysis : Statistical Perspective with Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9780367855901
  • DDC分類 519.535

Full Description

This book is a step-by-step data story for analyzing ordinal data from start to finish. The book is for researchers, statisticians and scientists who are working with datasets where the response is ordinal. This type of data is common in many disciplines, not just in surveys (as is often thought). For example, in the biological sciences, there is an interest in understanding and predicting the (growth) stage (of a plant or animal) based on a multitude of factors. Likewise, ordinal data is common in environmental sciences (for example, stage of a storm), chemical sciences (for example, type of reaction), physical sciences (for example, stage of damage when force is applied), medical sciences (for example, degree of pain) and social sciences (for example, demographic factors like social status categorized in brackets). There has been no complete text about how to model an ordinal response as a function of multiple numerical and categorical predictors. There has always been a reluctance and reticence towards ordinal data as it lies in a no-man's land between numerical and categorical data.

Examples from health sciences are used to illustrate in detail the process of how to analyze ordinal data, from exploratory analysis to modeling, to inference and diagnostics. This book also shows how Likert-type analysis is often used incorrectly and discusses the reason behind it. Similarly, it discusses the methods related to Structural Equations and talks about appropriate uses of this class of methods.

The text is meant to serve as a reference book and to be a "how-to" resource along with the "why" and "when" for modeling ordinal data.

Key Features:

Includes applications of the statistical theory
Includes illustrated examples with the associated R and SAS code
Discusses the key differences between the different methods that are used for ordinal data analysis
Bridges the gap between methods for ordinal data analysis used in different disciplines

Contents

Part 1: Introduction to Ordinal Data 1. Ordinal Data Part 2: Exploratory Analysis 2. Summarizing Ordinal Data Part 3: Methods for the Analysis of Ordinal Data 3. Historical Perspective 4. Likert Scale 5. Cumulative Distribution Function (CDF) Models 6. Latent Variable Models: Structural Equation Models Part 4: Further Work with Ordinal Data 7. Diagnostics of the Ordinal Regression Models 8. Simulating Ordinal Models Part 5: Overall Summary 9. Data Story: Analysis of the Heart Data 10. Tying up Loose Ends and Overall Summary

最近チェックした商品