Observer Performance Methods for Diagnostic Imaging : Foundations, Modeling, and Applications with R-Based Examples (Imaging in Medical Diagnosis and Therapy)

個数:

Observer Performance Methods for Diagnostic Imaging : Foundations, Modeling, and Applications with R-Based Examples (Imaging in Medical Diagnosis and Therapy)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 542 p.
  • 言語 ENG
  • 商品コード 9780367781637
  • DDC分類 616.07543

Full Description

"This book presents the technology evaluation methodology from the point of view of radiological physics and contrasts the purely physical evaluation of image quality with the determination of diagnostic outcome through the study of observer performance. The reader is taken through the arguments with concrete examples illustrated by code in R, an open source statistical language."
- from the Foreword by Prof. Harold L. Kundel, Department of Radiology, Perelman School of Medicine, University of Pennsylvania

"This book will benefit individuals interested in observer performance evaluations in diagnostic medical imaging and provide additional insights to those that have worked in the field for many years."
- Prof. Gary T. Barnes, Department of Radiology, University of Alabama at Birmingham

This book provides a complete introductory overview of this growing field and its applications in medical imaging, utilizing worked examples and exercises to demystify statistics for readers of any background. It includes a tutorial on the use of the open source, widely used R software, as well as basic statistical background, before addressing localization tasks common in medical imaging. The coverage includes a discussion of study design basics and the use of the techniques in imaging system optimization, memory effects in clinical interpretations, predictions of clinical task performance, alternatives to ROC analysis, and non-medical applications.

Dev P. Chakraborty, PhD, is a clinical diagnostic imaging physicist, certified by the American Board of Radiology in Diagnostic Radiological Physics and Medical Nuclear Physics. He has held faculty positions at the University of Alabama at Birmingham, University of Pennsylvania, and most recently at the University of Pittsburgh.

Contents

1 Preliminaries

PART A The receiver operating characteristic (ROC) paradigm

2 The binary paradigm

3 Modeling the binary task

4 The ratings paradigm

5 Empirical AUC

6 Binormal model

7 Sources of variability in AUC

PART B Two significance testing methods for the ROC paradigm

8 Hypothesis testing

9 Dorfman-Berbaum-Metz-Hillis (DBMH) analysis

10 Obuchowski-Rockette-Hillis (ORH) analysis

11 Sample size estimation

PART C The free-response ROC (FROC) paradigm

12 The FROC paradigm

13 Empirical operating characteristics possible with FROC data

14 Computation and meanings of empirical FROC FOM-statistics and AUC measures

15 Visual search paradigms

16 The radiological search model (RSM)

17 Predictions of the RSM

18 Analyzing FROC data

19 Fitting RSM to FROC/ROC data and key findings

PART D Selected advanced topics

20 Proper ROC models

21 The bivariate binormal model

22 Evaluating standalone CAD versus radiologists

23 Validating CAD analysis

最近チェックした商品