Auto-Segmentation for Radiation Oncology : State of the Art (Series in Medical Physics and Biomedical Engineering)

個数:
電子版価格
¥10,190
  • 電子版あり

Auto-Segmentation for Radiation Oncology : State of the Art (Series in Medical Physics and Biomedical Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780367761226
  • DDC分類 616.9940642

Full Description

This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations).

This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use.

Features:




Up-to-date with the latest technologies in the field



Edited by leading authorities in the area, with chapter contributions from subject area specialists



All approaches presented in this book are validated using a standard benchmark dataset established by the Thoracic Auto-segmentation Challenge held as an event of the 2017 Annual Meeting of American Association of Physicists in Medicine

Contents

Contents

Foreword I..........................................................................................................................................ix

Foreword II........................................................................................................................................xi

Editors............................................................................................................................................. xiii

Contributors......................................................................................................................................xv

Chapter 1 Introduction to Auto-Segmentation in Radiation Oncology.........................................1

Jinzhong Yang, Gregory C. Sharp, and Mark J. Gooding

Part I Multi-Atlas for Auto-Segmentation

Chapter 2 Introduction to Multi-Atlas Auto-Segmentation......................................................... 13

Gregory C. Sharp

Chapter 3 Evaluation of Atlas Selection: How Close Are We to Optimal Selection?................. 19

Mark J. Gooding

Chapter 4 Deformable Registration Choices for Multi-Atlas Segmentation............................... 39

Keyur Shah, James Shackleford, Nagarajan Kandasamy, and Gregory C. Sharp

Chapter 5 Evaluation of a Multi-Atlas Segmentation System......................................................49

Raymond Fang, Laurence Court, and Jinzhong Yang

Part II Deep Learning for Auto-Segmentation

Chapter 6 Introduction to Deep Learning-Based Auto-Contouring for Radiotherapy................ 71

Mark J. Gooding

Chapter 7 Deep Learning Architecture Design for Multi-Organ Segmentation......................... 81

Yang Lei, Yabo Fu, Tonghe Wang, Richard L.J. Qiu, Walter J. Curran,

Tian Liu, and Xiaofeng Yang

Chapter 8 Comparison of 2D and 3D U-Nets for Organ Segmentation.................................... 113

Dongdong Gu and Zhong Xue

Chapter 9 Organ-Specific Segmentation Versus Multi-Class Segmentation Using U-Net....... 125

Xue Feng and Quan Chen

Chapter 10 Effect of Loss Functions in Deep Learning-Based Segmentation............................ 133

Evan Porter, David Solis, Payton Bruckmeier, Zaid A. Siddiqui,

Leonid Zamdborg, and Thomas Guerrero

Chapter 11 Data Augmentation for Training Deep Neural Networks ........................................ 151

Zhao Peng, Jieping Zhou, Xi Fang, Pingkun Yan, Hongming Shan, Ge Wang,

X. George Xu, and Xi Pei

Chapter 12 Identifying Possible Scenarios Where a Deep Learning Auto-Segmentation

Model Could Fail...................................................................................................... 165

Carlos E. Cardenas

Part III Clinical Implementation Concerns

Chapter 13 Clinical Commissioning Guidelines......................................................................... 189

Harini Veeraraghavan

Chapter 14 Data Curation Challenges for Artificial Intelligence................................................ 201

Ken Chang, Mishka Gidwani, Jay B. Patel, Matthew D. Li, and

Jayashree Kalpathy-Cramer

Chapter 15 On the Evaluation of Auto-Contouring in Radiotherapy.......................................... 217

Mark J. Gooding

Index............................................................................................................................................... 253

最近チェックした商品