Mixture Modelling for Medical and Health Sciences (Chapman & Hall/crc Biostatistics Series)

個数:

Mixture Modelling for Medical and Health Sciences (Chapman & Hall/crc Biostatistics Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9780367729332
  • DDC分類 610.15195

Full Description

Mixture Modelling for Medical and Health Sciences provides a direct connection between theoretical developments in mixture modelling and their applications in real world problems. The book describes the development of the most important concepts through comprehensive analyses of real and practical examples taken from real-life research problems in medical and health sciences. This approach represents balance between "theory" and "practice", stimulating readers and enhancing their capacity to apply mixture models in data analysis. Full of reproducible examples using software code and publicly-available data, the book is suitable for graduate-level students, researchers, and practitioners who have a basic grounding in statistics and would like to explore the use of mixture models to analyse their experiments and research data.

Features


An in-depth account of the most up-to-date mixture modelling techniques from auser perspective.




Extensive real-life examples - from typical daily problems to complex data modelling.




Emphasis on the use of a wide variety of component densities for statistical modelling.




Coverage of the latest random-effects models in modelling complex correlated data.




An accompanying website to provide supplementary materials, including software and detailed programming code, and links to available data sources.




Provision of R and Fortran code for readers who want to do analysis of their own data using mixture models.



Shu-Kay Angus Ng is Professor of Biostatistics in the School of Medicine at the Griffith University, Australia. Dr Ng has published extensively on his research interests, which include cluster analysis, pattern recognition, random-effects modelling, and survival analysis.

Liming Xiang is Associate Professor of Statistics in the School of Physical & Mathematical Sciences at the Nanyang Technological University, Singapore. Her research interests include survival analysis, longitudinal/clustered data analysis and mixture models.

Kelvin Kai-wing Yau is Professor of Statistics in the Department of Management Sciences at the City University of Hong Kong. He has been involved in various interdisciplinary research projects, with journal publications in statistics, medical and health science journals on topics such as mixed effects models, survival analysis and statistical modelling in general.

Contents

1. Introduction. 2. Mixture of Normal Distributions for Continuous Data. 3. Mixture of Gamma Distributions for Continuous Non-Normal Data. 4. Mixture of Generalized Linear Models for Count or Categorical Data. 5. Mixture Models for Survival Data. 6. Advanced Mixture Modelling with Random-Effects Components. 7. Advanced Mixture Models for Multilevel or Repeated-Measured Data. 8. Continuous Data. 9. Miscellaneous: Handling of Missing Data. 10. Miscellaneous: Cluster Analysis of "Big Data" Using Mixture Models.

最近チェックした商品