Introduction to Lattice Algebra : With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks (Chapman & Hall/crc Mathematics and Artificial Intelligence Series)

個数:

Introduction to Lattice Algebra : With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks (Chapman & Hall/crc Mathematics and Artificial Intelligence Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 418 p.
  • 言語 ENG
  • 商品コード 9780367722951
  • DDC分類 004.015113

Full Description

Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general.

Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and - depending on the student's major - can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines.

Features




Filled with instructive examples and exercises to help build understanding
Suitable for researchers, professionals and students, both in mathematics and computer science
Contains numerous exercises.

Contents

1. Elements of Algebra. 1.1. Sets, Functions, and Notations. 1.2. Algebraic Structures. 2. Pertinent Properties of R. 2.2. Elementary Properties of Euclidean Spaces. 3. Lattice Theory. 3.1. Historical Background. 3.2. Partial Orders and Lattices. 3.3. Relations with other branches of Mathematics. 4. Lattice Algebra. 4.1. Lattice Semigroups and Lattice Groups. 4.2. Minimax Algebra. 4.3. Minimax Matrix Theory. 4.4. The Geometry of S(X).5. Matrix-Based Lattice Associative Memories. 5.1. Historical Background. 5.2. Associative Memories. 6. Extreme Points of Data Sets. 6.1. Relevant Concepts of Convex Set Theory. 6.2. Affine Subsets of EXT(ß(X)).7. Image Unmixing and Segmentation. 7,1, Spectral Endmembers and Linear Unmixing. 7.2. Aviris Hyperspectral Image Examples. 7.3. Endmembers and Clustering Validation Indexes. 7.4. Color Image Segmentation. 8. Lattice-Based Biomimetic Neural Networks. 8.1. Biomimetics Artificial Neural Networks. 8.2. Lattice Biomimetic Neural Networks. 9. Learning in Biomimetic Neural Networks. 9.1 Learning in Single-Layer LBNNS. 9.2. Multi-Layer Lattice Biomimetic Neural Network. Epilogues. Bibliography.

最近チェックした商品