高次元統計学入門(第2版)<br>Introduction to High-Dimensional Statistics (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

個数:

高次元統計学入門(第2版)
Introduction to High-Dimensional Statistics (Chapman & Hall/crc Monographs on Statistics and Applied Probability) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 364 p.
  • 言語 ENG
  • 商品コード 9780367716226
  • DDC分類 519.535

Full Description

Praise for the first edition:

"[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research."
—Journal of the American Statistical Association

Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition:




Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators.



Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds.



Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality.



Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory.



Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site.



Illustrates concepts with simple but clear practical examples.

Contents

1. Introduction. 2. Model Selection. 3. Minimax Lower Bounds. 4. Aggregation of Estimators. 5. Convex Criteria. 6. Iterative Algorithms. 7. Estimator Selection. 8. Multivariate Regression. 9. Graphical Models. 10. Multiple Testing. 11. Supervised Classification. 12. Clustering.

最近チェックした商品