医薬品開発とデータサイエンス・AI・機械学習<br>Data Science, AI, and Machine Learning in Drug Development (Chapman & Hall/crc Biostatistics Series)

個数:
電子版価格
¥11,376
  • 電子版あり

医薬品開発とデータサイエンス・AI・機械学習
Data Science, AI, and Machine Learning in Drug Development (Chapman & Hall/crc Biostatistics Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9780367708078
  • DDC分類 615.1900285

Full Description

The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change.

Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations.

Features

Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D
Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval
Offers a balanced approach to data science organization build
Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development
Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise

Contents

1 Transforming Pharma with Data Science, AI and Machine Learning 2 Regulatory Perspective on Big Data, AI, and Machining Learning 3 Building an Agile and Scalable Data Science Organization 4 AI and Machine Learning in Drug Discovery 5 Predicting Anti-Cancer Synergistic Activity Through Machine Learning and Natural Language Processing 6 AI-Enabled Clinical Trials 7 Machine Learning for Precision Medicine 8 Reinforcement Learning in Personalized Medicine 9 Leveraging Machine Learning, Natural Language Processing, and Deep Learning in Drug Safety and Pharmacovigilance 10 Intelligent Manufacturing and Supply of Biopharmaceuticals 11 Reinventing Medical Affairs in the Era of Big Data and Analytics 12 Deep Learning with Electronic Health Record 13 Real-World Evidence for Treatment Access and Payment Decisions

最近チェックした商品