Candlestick Forecasting for Investments : Applications, Models and Properties (Routledge Advances in Risk Management)

個数:

Candlestick Forecasting for Investments : Applications, Models and Properties (Routledge Advances in Risk Management)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 116 p.
  • 言語 ENG
  • 商品コード 9780367703394
  • DDC分類 332.6

Full Description

Candlestick charts are often used in speculative markets to describe and forecast asset price movements. This book is the first of its kind to investigate candlestick charts and their statistical properties. It provides an empirical evaluation of candlestick forecasting. The book proposes a novel technique to obtain the statistical properties of candlestick charts. The technique, which is known as the range decomposition technique, shows how security price is approximately logged into two ranges, i.e. technical range and Parkinson range.

Through decomposition-based modeling techniques and empirical datasets, the book investigates the power of, and establishes the statistical foundation of, candlestick forecasting.

Contents

PART I INTRODUCTION AND OUTLINE 1. Introduction 1.1 Technical analysis before the 1970s 1.2 Technical analysis during 1990s-2000s 1.3 Recent advances in technical analysis 1.4 Summary 2. Outline of this book PART II CANDLESTICK 3. Basic concepts 4. Statistical properties 4.1 Propositions 4.2 Simulations 4.3 Empirical evidence 4.4 Summary PART III STATISTICAL MODELS 5. DVAR model 5.1 The model 5.2 Statistical foundation 5.3 Simulations 5.4 Empirical results 5.5 Summary 6. Shadows in DVAR 6.1 Simulations 6.2 Theoretical explanation 6.3 Empirical evidence 6.4 Summary PART IV APPLICATIONS 7. Market volatility timing 7.1 Introduction 7.2 GARCH@CARR model 7.3 Economic value of volatility timing 7.4 Empirical results 7.5 Summary 8. Technical range forecasting 8.1 Introduction 8.2 Econometric methods 8.3 An empirical study 8.4 Summary 9. Technical range spillover 9.1 Introduction 9.2 Econometric method 9.3 An empirical study: DAX and CAC40 9.4 Summary 10. Stock return forecasting: U.S. S&P500 10.1 Introduction 10.2 Econometric methods 10.3 Statistical evidence 10.4 Economic evidence 10.5 More details 10.6 Summary 11. Oil price forecasting: WTI Crude Oil 11.1 Introduction 11.2 Econometric method 11.3 Empirical results 11.4 Summary PART V CONCLUSIONS AND FUTURE STUDIES 12. Main conclusions 13. Future studies

最近チェックした商品