ランダム行列と非可換確率<br>Random Matrices and Non-Commutative Probability

個数:
電子版価格
¥12,455
  • 電子版あり

ランダム行列と非可換確率
Random Matrices and Non-Commutative Probability

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 286 p.
  • 言語 ENG
  • 商品コード 9780367700812
  • DDC分類 512.9434

Full Description

This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful.




Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.




Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.




Free cumulants are introduced through the Möbius function.




Free product probability spaces are constructed using free cumulants.




Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.




Convergence of the empirical spectral distribution is discussed for symmetric matrices.




Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.




Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.




Exercises, at advanced undergraduate and graduate level, are provided in each chapter.

Contents

Classical independence, moments and cumulants. 2. Non-commutative probability. 3. Free independence. 4. Convergence. 5. Transforms. 6. C* -probability space. 7. Random matrices. 8. Convergence of some important matrices. 9. Joint convergence I: single pattern. 10. Joint convergence II: multiple patterns. 11. Asymptotic freeness of random matrices. 12. Brown measure. 13. Tying three loose ends.

最近チェックした商品