二次元材料科学における機械学習<br>Machine Learning in 2D Materials Science

個数:

二次元材料科学における機械学習
Machine Learning in 2D Materials Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9780367678203
  • DDC分類 620.11

Full Description

Data science and machine learning (ML) methods are increasingly being used to transform the way research is being conducted in materials science to enable new discoveries and design new materials. For any materials science researcher or student, it may be daunting to figure out if ML techniques are useful for them or, if so, which ones are applicable in their individual contexts, and how to study the effectiveness of these methods systematically.

KEY FEATURES

Provides broad coverage of data science and ML fundamentals to materials science researchers so that they can confidently leverage these techniques in their research projects
Offers introductory material in topics such as ML, data integration, and 2D materials
Provides in-depth coverage of current ML methods for validating 2D materials using both experimental and simulation data, researching and discovering new 2D materials, and enhancing ML methods with physical properties of materials
Discusses customized ML methods for 2D materials data and applications and high-throughput data acquisition
Describes several case studies illustrating how ML approaches are currently leading innovations in the discovery, development, manufacturing, and deployment of 2D materials needed for strengthening industrial products
Gives future trends in ML for 2D materials, explainable AI, and dealing with extremely large and small, diverse datasets

Aimed at materials science researchers, this book allows readers to quickly, yet thoroughly, learn the ML and AI concepts needed to ascertain the applicability of ML methods in their research.

Contents

Chapter 1 Introduction to Machine Learning for Analyzing Material-Microbe Interactions

Venkataramana Gadhamshetty, Parvathi Chundi, and Bharat K. Jasthi

Chapter 2 Introduction to 2D Materials

Roberta Amendola and Amit Acharjee

Chapter 3 An Overview of Machine Learning

Dilanga Abeyrathna, Mahadevan Subramaniam, and Parvathi Chundi

Chapter 4 Discovery of 2D Materials with Machine Learning

Md Mahmudul Hasan, Rabbi Sikder, Bharat K. Jasthi, Etienne Z. Gnimpieba, and Venkataramana Gadhamshetty

Chapter 5 Bacterial Image Segmentation through Deep Learning Approach

Ejan Shakya and Pei-Chi Huang

Chapter 6 Self-Supervised Learning-Based Classification of Scanning Electron Microscope Images of Biofilms

Md Ashaduzzaman and Mahadevan Subramaniam

Chapter 7 Quorum Sensing Mechanisms, Biofilm Growth, and Microbial Corrosion Effects of Bacterial Species

Vaibhav Handa, Saurabh Dhiman, Kalimuthu Jawaharraj, Vincent Peta, Alain Bomgni, Etienne Z. Gnimpieba, and Venkataramana Gadhamshetty

Chapter 8 Data-Driven 2D Material Discovery Using Biofilm Data and Information Discovery System (Biofilm-DIDS)

Tuyen Do, Alain Bomgni, Shiva Aryal, Venkataramana Gadhamshetty, Diing D. M. Agany, Tim Hartman, Bichar D. Shrestha Gurung, Carol M. Lushbough, and Etienne Z. Gnimpieba

最近チェックした商品