Rによるノンパラメトリック統計手法<br>Nonparametric Statistical Methods Using R (Chapman & Hall/crc Texts in Statistical Science) (2ND)

個数:

Rによるノンパラメトリック統計手法
Nonparametric Statistical Methods Using R (Chapman & Hall/crc Texts in Statistical Science) (2ND)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9780367651350
  • DDC分類 519.54

Full Description

Praise for the first edition:

"This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R."
-The American Statistician

This thoroughly updated and expanded second edition of Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses. Two new chapters covering multivariate analyses and big data have been added. Core classical nonparametrics chapters on one- and two-sample problems have been expanded to include discussions on ties as well as power and sample size determination. Common machine learning topics --- including k-nearest neighbors and trees --- have also been included in this new edition.

Key Features:

Covers a wide range of models including location, linear regression, ANOVA-type, mixed models for cluster correlated data, nonlinear, and GEE-type.
Includes robust methods for linear model analyses, big data, time-to-event analyses, timeseries, and multivariate.
Numerous examples illustrate the methods and their computation.
R packages are available for computation and datasets.
Contains two completely new chapters on big data and multivariate analysis.

The book is suitable for advanced undergraduate and graduate students in statistics and data science, and students of other majors with a solid background in statistical methods including regression and ANOVA. It will also be of use to researchers working with nonparametric and rank-based methods in practice.

Contents

1. Introduction 2. One-Sample Problems 3. Two-Sample Problems 4. Regression 5. ANOVA-Type Rank-Based Procedures 6. Categorical 7. Linear Models 8. Topics in Regression 9. Cluster Correlated Data 10. Multivariate Analysis 11. Big Data Appendix - R Version Information

最近チェックした商品