Machine Learning for Healthcare : Handling and Managing Data

個数:

Machine Learning for Healthcare : Handling and Managing Data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 204 p.
  • 言語 ENG
  • 商品コード 9780367625719
  • DDC分類 610.285631

Full Description

Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them.

Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector.

The features of this book include:




A unique and complete focus on applications of machine learning in the healthcare sector.



An examination of how data analysis can be done using healthcare data and bioinformatics.



An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values.



An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors.

Contents

Contents

Preface..................................................................................................................... vii

Acknowledgments..................................................................................................xi

Editors.................................................................................................................... xiii

List of Contributors............................................................................................. xvii

1. Fundamentals of Machine Learning...........................................................1

Rashmi Agrawal

2. Medical Information Systems..................................................................... 17

Uday Sah, Abhushan Chataut, and Jyotir Moy Chatterjee

3. The Role of Metaheuristic Algorithms in Healthcare...........................25

G. Uma Maheswari, R. Sujatha, V. Mareeswari, and E. P. Ephzibah

4. Decision Support System to Improve Patient Care................................ 41

V. Diviya Prabha and R. Rathipriya

5. Effects of Cell Phone Usage on Human Health and Specifically

on the Brain.....................................................................................................53

Soobia Saeed, Afnizanfaizal Abdullah, N. Z. Jhanjhi, Mehmood Naqvi

and Shakeel Ahmed

6. Feature Extraction and Bio Signals............................................................ 69

A. Mary Judith, S Baghavathi Priya, N. Kanya, and Jyotir Moy Chatterjee

7. Comparison Analysis of Multidimensional Segmentation Using

Medical Health-Care Information............................................................. 81

Soobia Saeed, Afnizanfaizal Abdullah, N. Z. Jhanjhi, Memood Naqvi,

and Azeem Khan

8. Deep Convolutional Network Based Approach for Detection

of Liver Cancer and Predictive Analytics on Cloud...............................95

Pramod H. B. and Goutham M.

9. Performance Analysis of Machine Learning Algorithm for

Healthcare Tools with High Dimension Segmentation...................... 115

Soobia Saeed, Afnizanfaizal Abdullah, N. Z. Jhanjhi, Memood Naqvi

and Mamoona Humayun

10. Patient Report Analysis for Identification and

Diagnosis of Disease.................................................................................. 129

Muralidharan C., Mohamed Sirajudeen Y., and Anitha R.

11. Statistical Analysis of the Pre- and Post-Surgery in the

Healthcare Sector Using High Dimension Segmentation.................. 159

Soobia Saeed, Afnizanfaizal Abdullah, N. Z. Jhanjhi, Memood Naqvi,

and Mamoona Humayun

12. Machine Learning in Diagnosis of Children with Disorders........... 175

Lokesh Kumar Saxena and Manishikha Saxena

13. Forecasting Dengue Incidence Rate in Tamil Nadu Using

ARIMA Time Series Model...................................................................... 187

S. Dhamodharavadhani, R. Rathipriya

Index......................................................................................................................203

最近チェックした商品