Social Sensing and Big Data Computing for Disaster Management

個数:

Social Sensing and Big Data Computing for Disaster Management

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 言語 ENG
  • 商品コード 9780367617677
  • DDC分類 363.348028557

Full Description

Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management. Specifically, analysed within this book are some of the promises and pitfalls of social sensing data for disaster relevant information extraction, impact area assessment, population mapping, occurrence patterns, geographical disparities in social media use, and inclusion in larger decision support systems.

Traditional data collection methods such as remote sensing and field surveying often fail to offer timely information during or immediately following disaster events. Social sensing enables all citizens to become part of a large sensor network which is low cost, more comprehensive, and always broadcasting situational awareness information. However, data collected with social sensing is often massive, heterogeneous, noisy, and unreliable in some aspects. It comes in continuous streams, and often lacks geospatial reference information. Together, these issues represent a grand challenge toward fully leveraging social sensing for emergency management decision making under extreme duress. Meanwhile, big data computing methods and technologies such as high-performance computing, deep learning, and multi-source data fusion become critical components of using social sensing to understand the impact of and response to the disaster events in a timely fashion.

This book was originally published as a special issue of the International Journal of Digital Earth.

Contents

1. Introduction to social sensing and big data computing for disaster management

Zhenlong Li, Qunying Huang and Christopher T. Emrich

2. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma

Muhammed Ali Sit, Caglar Koylu and Ibrahim Demir

3. Deep learning for real-time social media text classification for situation awareness - using Hurricanes Sandy, Harvey, and Irma as case studies

Manzhu Yu, Qunying Huang, Han Qin, Chris Scheele and Chaowei Yang

4. A visual-textual fused approach to automated tagging of flood-related tweets during a flood event

Xiao Huang, Cuizhen Wang, Zhenlong Li and Huan Ning

5. Rapid estimation of an earthquake impact area using a spatial logistic growth model based on social media data

Yandong Wang, Shisi Ruan, Teng Wang and Mengling Qiao

6. Mapping near-real-time power outages from social media

Huina Mao, Gautam Thakur, Kevin Sparks, Jibonananda Sanyal and Budhendra Bhaduri

7. Social and geographical disparities in Twitter use during Hurricane Harvey

Lei Zou, Nina S. N. Lam, Shayan Shams, Heng Cai, Michelle A. Meyer, Seungwon Yang, Kisung Lee, Seung-Jong Park and Margaret A. Reams

8. Population distribution modelling at fine spatio-temporal scale based on mobile phone data

Petr Kubíček, Milan Konečný, Zdeněk Stachoň, Jie Shen, Lukáš Herman, Tomáš Řezník, Karel Staněk, Radim Štampach and Šimon Leitgeb

9. Discovering the relationship of disasters from big scholar and social media news datasets

Liang Zheng, Fei Wang, Xiaocui Zheng and Binbin Liu

10. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management

Zhe Zhang, Hao Hu, Dandong Yin, Shakil Kashem, Ruopu Li, Heng Cai, Dylan Perkins and Shaowen Wang

最近チェックした商品