Recent Advances in Time Series Forecasting (Mathematical Engineering, Manufacturing, and Management Sciences)

個数:

Recent Advances in Time Series Forecasting (Mathematical Engineering, Manufacturing, and Management Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 228 p.
  • 言語 ENG
  • 商品コード 9780367608699
  • DDC分類 519.550112

Full Description

Future predictions are always a topic of interest. Precise estimates are crucial in many activities as forecasting errors can lead to big financial loss. The sequential analysis of data and information gathered from past to present is call time series analysis. This book covers the recent advancements in time series forecasting.

The book includes theoretical as well as recent applications of time series analysis. It focuses on the recent techniques used, discusses a combination of methodology and applications, presents traditional and advanced tools, new applications, and identifies the gaps in knowledge in engineering applications.

This book is aimed at scientists, researchers, postgraduate students and engineers in the areas of supply chain management, production, inventory planning, and statistical quality control.

Contents

Chapter 1.Time Series Econometrics: Some Initial Understanding

Chapter 2.Time Series Analysis for Modeling the Transmission of Dengue Disease

Chapter 3.Time-Series Analysis of COVID-19 Confirmed Cases in Select Countries

Chapter 4.Bayesian Estimation of Bonferroni Curve And Zenga Curve in Case of Dagum Distribution

Chapter 5.Band Pass Filters and their Applications in Time Series Analyses

Chapter 6.Deep learning approaches to time-series forecasting

Chapter 7.ARFIMA and ARTFIMA Processes in Time Series with Applications

Chapter 8.Comparative Study of Time series Forecasting Models for COVID-19 Cases in India

Chapter 9.Time Series Forecasting Using Support Vector Machines

Chapter 10.A Comprehensive Review on Urban Floods and it's Modeling Techniques

Chapter 11.Fuzzy Time Series Techniques for Forecasting

Chapter 12.(Artificial Neural Networks (ANNs) and their Application in Soil and Water Resources Engineering)

最近チェックした商品