Implementing Reproducible Research (Chapman & Hall/crc the R Series)

個数:

Implementing Reproducible Research (Chapman & Hall/crc the R Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9780367576172
  • DDC分類 507.2

Full Description

In computational science, reproducibility requires that researchers make code and data available to others so that the data can be analyzed in a similar manner as in the original publication. Code must be available to be distributed, data must be accessible in a readable format, and a platform must be available for widely distributing the data and code. In addition, both data and code need to be licensed permissively enough so that others can reproduce the work without a substantial legal burden.

Implementing Reproducible Research covers many of the elements necessary for conducting and distributing reproducible research. It explains how to accurately reproduce a scientific result.

Divided into three parts, the book discusses the tools, practices, and dissemination platforms for ensuring reproducibility in computational science. It describes:


Computational tools, such as Sweave, knitr, VisTrails, Sumatra, CDE, and the Declaratron system

Open source practices, good programming practices, trends in open science, and the role of cloud computing in reproducible research

Software and methodological platforms, including open source software packages, RunMyCode platform, and open access journals



Each part presents contributions from leaders who have developed software and other products that have advanced the field. Supplementary material is available at www.ImplementingRR.org.

Contents

Tools: knitr: A Comprehensive Tool for Reproducible Research in R. Reproducibility Using VisTrails. Sumatra: A Toolkit for Reproducible Research. CDE: Automatically Package and Reproduce Computational Experiments. Reproducible Physical Science and the Declaratron. Practices and Guidelines: Developing Open-Source Scientific Practice. Reproducible Bioinformatics Research for Biologists. Reproducible Research for Large-Scale Data Analysis. Practicing Open Science. Reproducibility, Virtual Appliances, and Cloud Computing. The Reproducibility Project: A Model of Large-Scale Collaboration for Empirical Research on Reproducibility—Open Science Collaboration. What Computational Scientists Need to Know about Intellectual Property Law: A Primer. Platforms: Open Science in Machine Learning. RunMyCode.org: A Research-Reproducibility Tool for Computational Sciences. Open Science and the Role of Publishers in Reproducible Research. Index.

最近チェックした商品