Evolutionary Multi-Objective System Design : Theory and Applications (Chapman & Hall/crc Computer and Information Science Series)

個数:

Evolutionary Multi-Objective System Design : Theory and Applications (Chapman & Hall/crc Computer and Information Science Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 218 p.
  • 言語 ENG
  • 商品コード 9780367572808
  • DDC分類 620.0042

Full Description

Real-world engineering problems often require concurrent optimization of several design objectives, which are conflicting in cases. This type of optimization is generally called multi-objective or multi-criterion optimization. The area of research that applies evolutionary methodologies to multi-objective optimization is of special and growing interest. It brings a viable computational solution to many real-world problems.

Generally, multi-objective engineering problems do not have a straightforward optimal design. These kinds of problems usually inspire several solutions of equal efficiency, which achieve different trade-offs. Decision makers' preferences are normally used to select the most adequate design. Such preferences may be dictated before or after the optimization takes place. They may also be introduced interactively at different levels of the optimization process. Multi-objective optimization methods can be subdivided into classical and evolutionary. The classical methods usually aim at a single solution while the evolutionary methods provide a whole set of so-called Pareto-optimal solutions.

Evolutionary Multi-Objective System Design: Theory and Applications

provides a representation of the state-of-the-art in evolutionary multi-objective optimization research area and related new trends. It reports many innovative designs yielded by the application of such optimization methods. It also presents the application of multi-objective optimization to the following problems:


Embrittlement of stainless steel coated electrodes




Learning fuzzy rules from imbalanced datasets




Combining multi-objective evolutionary algorithms with collective intelligence




Fuzzy gain scheduling control




Smart placement of roadside units in vehicular networks




Combining multi-objective evolutionary algorithms with quasi-simplex local search




Design of robust substitution boxes




Protein structure prediction problem




Core assignment for efficient network-on-chip-based system design

Contents

Embrittlement of Stainless Steel Coated Electrodes. Learning Fuzzy Rules from Imbalanced Datasets using Multi-objective Evolutionary Algorithms. Hybrid Multi-Objective Evolutionary Algorithms with Collective Intelligence. Multiobjective Particle Swarm Optimization Fuzzy Gain Scheduling Control. Multiobjective evolutionary algorithms for smart placement. Solving Multi-Objective Problems with MOEA/D and Quasi-Simplex Local Search. Multi-objective Evolutionary Design of Robust Substitution Boxes. Multi-objective approach to the Protein Structure Prediction Problem. Multi-objective IP Assignment for Efficient NoC-based System Design.

最近チェックした商品