Effective Stress and Equilibrium Equation for Soil Mechanics

個数:

Effective Stress and Equilibrium Equation for Soil Mechanics

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 150 p.
  • 言語 ENG
  • 商品コード 9780367572457
  • DDC分類 624.15136

Full Description

The concept of effective stress and the effective stress equation is fundamental for establishing the theory of strength and the relationship of stress and strain in soil mechanics and poromechanics. However, up till now, the physical meaning of effective stress has not been explained clearly, and the theoretical basis of the effective stress equation has not been proposed. Researchers have not yet reached a common understanding of the feasibility of the concept of effective stress and effective stress equation for unsaturated soils.
Effective Stress and Equilibrium Equation for Soil Mechanics discusses the definition of the soil skeleton at first and clarifies that the soil skeleton should include a fraction of pore water. When a free body of soil skeleton is taken to conduct internal force analysis, the stress on the surface of the free body has two parts: one is induced by pore fluid pressure that only includes normal stress; the other is produced by all the other external forces excluding pore fluid pressure. If the effective stress is defined as the soil skeleton stress due to all the external forces excluding pore fluid pressure, the effective stress equation can be easily obtained by the internal force equilibrium analysis. This equation reflects the relationship between the effective stress, total stress and pore fluid pressure, which does not change with the soil property. The effective stress equation of saturated soils and unsaturated soils is unified, i.e., o˜=o˜t -Seuw-(1-Se)ua. For multiphase porous medium, o˜=o˜t -u*,u*=Seiui(i=1,2,...,M). In this book, a theoretical formula of the coefficient of permeability for unsaturated soils is derived. The formula of the seepage force is modified based on the equilibrium differential equation of the pore water. The relationship between the effective stress and the shear strength and deformation of unsaturated soils is preliminarily verified. Finally, some possibly controversial problems are discussed to provide a better understanding of the role of the equilibrium equation and the concept of effective stress.

Contents

Preface

1 Introduction
1.1 Effective stress
1.2 Equilibrium differential equations
1.3 Continuous medium matter model for soils
1.4 Three constitutive phases of soils
1.5 Soil-water potential and its components
1.6 Soil-water characteristic curves

2 Equilibrium differential equations of soils
2.1 Equilibrium differential equations of soil mass
2.2 Static equilibrium equation of the soil skeleton

3 Effective stress
3.1 Effective stress equation and physical meaning of effective stress
3.2 Relationship between effective stress and shear strength/volumetric strain
3.3 Primary verification of the correlation between effective stress and shear strength of unsaturated soils
3.4 Effective stress principle for unsaturated soils

4 Seepage equation of unsaturated soils
4.1 Seepage equation of saturated soils
4.2 Seepage equation for unsaturated soils
4.3 Formula of seepage force
4.4 The overflow condition of the gas in soils

5 Discussion on some issues related to effective stress
5.1 Does Terzaghi's effective stress equation need to be modified?
5.2 Is effective stress pseudo or real stress?
5.3 Effective stress and stress state variables of soils
5.4 Effective stress and soil skeleton stress
5.5 The Effective stress of unsaturated soils
5.6 Should contractile skin be the fourth phase?

Units and symbols

References

Index

最近チェックした商品