Bayesian Regression Modeling with INLA (Chapman & Hall/crc Computer Science & Data Analysis)

個数:
電子版価格
¥11,064
  • 電子版あり
  • ポイントキャンペーン

Bayesian Regression Modeling with INLA (Chapman & Hall/crc Computer Science & Data Analysis)

  • ウェブストア価格 ¥15,055(本体¥13,687)
  • Chapman & Hall/CRC(2020/06発売)
  • 外貨定価 US$ 68.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 680pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9780367572266
  • DDC分類 519.542

Full Description

INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference.

Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work.

Contents

Introduction to Bayesian Statistics. Bayesian Hierarchical Modeling. Model-Based Bayesian Inference. Linear and Generalized Linear Models. Linear and Generalized Linear Mixed Models. Zero-Inflated Mixture Models. Survival Analysis. Nonparametric Regression and Additive Models. Functional Regression Models. Measurement Error Models. Quantile Regression.

最近チェックした商品