Statistics in Engineering : With Examples in MATLAB® and R, Second Edition (Chapman & Hall/crc Texts in Statistical Science) (2ND)

個数:

Statistics in Engineering : With Examples in MATLAB® and R, Second Edition (Chapman & Hall/crc Texts in Statistical Science) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 792 p.
  • 言語 ENG
  • 商品コード 9780367570620
  • DDC分類 620.0015195

Full Description

Engineers are expected to design structures and machines that can operate in challenging and volatile environments, while allowing for variation in materials and noise in measurements and signals. Statistics in Engineering, Second Edition: With Examples in MATLAB and R covers the fundamentals of probability and statistics and explains how to use these basic techniques to estimate and model random variation in the context of engineering analysis and design in all types of environments.

The first eight chapters cover probability and probability distributions, graphical displays of data and descriptive statistics, combinations of random variables and propagation of error, statistical inference, bivariate distributions and correlation, linear regression on a single predictor variable, and the measurement error model. This leads to chapters including multiple regression; comparisons of several means and split-plot designs together with analysis of variance; probability models; and sampling strategies. Distinctive features include:


All examples based on work in industry, consulting to industry, and research for industry




Examples and case studies include all engineering disciplines




Emphasis on probabilistic modeling including decision trees, Markov chains and processes, and structure functions




Intuitive explanations are followed by succinct mathematical justifications




Emphasis on random number generation that is used for stochastic simulations of engineering systems, demonstration of key concepts, and implementation of bootstrap methods for inference




Use of MATLAB and the open source software R, both of which have an extensive range of statistical functions for standard analyses and also enable programing of specific applications




Use of multiple regression for times series models and analysis of factorial and central composite designs




Inclusion of topics such as Weibull analysis of failure times and split-plot designs that are commonly used in industry but are not usually included in introductory textbooks




Experiments designed to show fundamental concepts that have been tested with large classes working in small groups




Website with additional materials that is regularly updated



Andrew Metcalfe, David Green, Andrew Smith, and Jonathan Tuke have taught probability and statistics to students of engineering at the University of Adelaide for many years and have substantial industry experience. Their current research includes applications to water resources engineering, mining, and telecommunications. Mahayaudin Mansor worked in banking and insurance before teaching statistics and business mathematics at the Universiti Tun Abdul Razak Malaysia and is currently a researcher specializing in data analytics and quantitative research in the Health Economics and Social Policy Research Group at the Australian Centre for Precision Health, University of South Australia. Tony Greenfield, formerly Head of Process Computing and Statistics at the British Iron and Steel Research Association, is a statistical consultant. He has been awarded the Chambers Medal for outstanding services to the Royal Statistical Society; the George Box Medal by the European Network for Business and Industrial Statistics for Outstanding Contributions to Industrial Statistics; and the William G. Hunter Award by the American Society for

Contents

I Foundations

Why Understand Statistics?
Introduction Using the book Software
Probability and Making Decisions
Introduction Random digits Concepts and uses Generating random digits Pseudo random digits Defining probabilities Defining probabilities {Equally likely outcomes Defining probabilities {relative frequencies Defining probabilities {subjective probability and expected monetary value Axioms of Probability The addition rule of probability Complement Conditional probability Conditioning on information Conditional probability and the multiplicative rule Independence Tree diagrams Bayes' theorem Law of total probability Bayes' theorem for two events Bayes' theorem for any number of events Decision trees Permutations and combinations Simple random sample Summary Notation Summary of main results MATLAB and R commands Exercises
Graphical Displays of Data and Descriptive Statistics
Types of variables Samples and populations Displaying data Stem-and-leaf plot Time series plot Pictogram Pie chart Bar chart Rose plot Line chart for discrete variables Histogram and cumulative frequency polygon for continuous variables Pareto chart Numerical summaries of data Population and sample Measures of location Measures of spread Box-plots Outlying values and robust statistics Outlying values Robust statistics Grouped data Calculation of the mean and standard

最近チェックした商品