古典・幾何学的最適化の基礎(テキスト)<br>Elements of Classical and Geometric Optimization

個数:

古典・幾何学的最適化の基礎(テキスト)
Elements of Classical and Geometric Optimization

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 484 p.
  • 言語 ENG
  • 商品コード 9780367560164
  • DDC分類 519.6

Full Description

This comprehensive textbook covers both classical and geometric aspects of optimization using methods, deterministic and stochastic, in a single volume and in a language accessible to non-mathematicians. It will help serve as an ideal study material for senior undergraduate and graduate students in the fields of civil, mechanical, aerospace, electrical, electronics, and communication engineering.

The book includes:

Derivative-based Methods of Optimization.
Direct Search Methods of Optimization.
Basics of Riemannian Differential Geometry.
Geometric Methods of Optimization using Riemannian Langevin Dynamics.
Stochastic Analysis on Manifolds and Geometric Optimization Methods.

This textbook comprehensively treats both classical and geometric optimization methods, including deterministic and stochastic (Monte Carlo) schemes. It offers an extensive coverage of important topics including derivative-based methods, penalty function methods, method of gradient projection, evolutionary methods, geometric search using Riemannian Langevin dynamics and stochastic dynamics on manifolds. The textbook is accompanied by online resources including MATLAB codes which are uploaded on our website. The textbook is primarily written for senior undergraduate and graduate students in all applied science and engineering disciplines and can be used as a main or supplementary text for courses on classical and geometric optimization.

Contents

Contents

Chapter 1 Optimization methods - A preview
1.1 Introduction
1.2 The continuous case - mathematical formulation
1.3 The discrete case - The travelling salesman problem
1.4 Basics of probability theory and random number generation
1.5 The brachistochrone problem
1.6 More on functional optimization: Hamilton's principle
1.7 Constrained optimization problems and optimality conditions
1.8. Functional optimization and optimal control
Concluding Remarks
Exercises

Notations
References

Chapter 2 Classical derivative-based methods of optimization
2.1 Introduction
2.2 Basic gradient methods
2.3 Quasi-Newton methods
2.4 Penalty function methods
2.5 Linear programming (LP)
2.6. Method of generalized reduced gradients
2.7 Method of feasible directions
2.8 Method of gradient projection
Concluding remarks
Exercises
Notations
References

Chapter 3 - Classical derivative-free methods of optimization
3.1 Introduction
3.2 Direct search methods
3.3 Other direct search methods
3.4 Metaheuristics - Evolutionary methods

Concluding remarks
Exercises
Notations
References

Chapter 4 Elements of Riemannian Differential Geometry and geometric methods of optimization

4.1 Introduction
4.2 Tangent vectors and tangent space on manifolds
4.3 Riemannian (geometric) version of some classical gradient methods
4.4. Statistical estimation by geometrical method of optimization
4.5. Stochastic processes, stochastic calculus and solution of SDEs
4.6. Analogy between statistical sampling and stochastic optimization
4.7. Geometric method of optimization by Riemannian Langevin dynamics
Concluding remarks
Exercises
Notations
References

Chapter 5 Stochastic analysis on a manifold and more on geometric optimization methods
5.1. Introduction
5.2 Stochastic development on a manifold
5.3. Non-convex function optimization based on stochastic development
5.4. Parameter estimation by GALA
Concluding remarks
Notations
References

最近チェックした商品