Applied Intelligent Decision Making in Machine Learning (Computational Intelligence in Engineering Problem Solving)

個数:

Applied Intelligent Decision Making in Machine Learning (Computational Intelligence in Engineering Problem Solving)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 252 p.
  • 言語 ENG
  • 商品コード 9780367504939
  • DDC分類 006.31

Full Description

The objective of this edited book is to share the outcomes from various research domains to develop efficient, adaptive, and intelligent models to handle the challenges related to decision making. It incorporates the advances in machine intelligent techniques such as data streaming, classification, clustering, pattern matching, feature selection, and deep learning in the decision-making process for several diversified applications such as agriculture, character recognition, landslide susceptibility, recommendation systems, forecasting air quality, healthcare, exchange rate prediction, and image dehazing. It also provides a premier interdisciplinary platform for scientists, researchers, practitioners, and educators to share their thoughts in the context of recent innovations, trends, developments, practical challenges, and advancements in the field of data mining, machine learning, soft computing, and decision science. It also focuses on the usefulness of applied intelligent techniques in the decision-making process in several aspects.

To address these objectives, this edited book includes a dozen chapters contributed by authors from around the globe. The authors attempt to solve these complex problems using several intelligent machine-learning techniques. This allows researchers to understand the mechanism needed to harness the decision-making process using machine-learning techniques for their own respective endeavors.

Contents

1. Data Stream Mining for Big Data.

2. Decoding Common Machine Learning Methods: Agricultural Application Case Studies Using Open Source Software.

3. A Multi-Stage Hybrid Model for Odia Compound Character Recognition.

4. Development of Hybrid Computational Approaches for Landslide Susceptibility Mapping Using Remotely Sensed Data in East Sikkim, India.

5. Domain-Specific Journal Recommendation Using Feed Forward Neural Network.

6. Forecasting Air Quality in India through an Ensemble Clustering Technique.

7. Intelligence-Based Health Biomarker Identification System Using Microarray Analysis.

8. Extraction of Medical Entities Using Matrix-Based Pattern-Matching Method.

9. Supporting Environmental Decision Making: Application of Machine Learning Techniques to Australia's Emissions.

10. Prediction Analysis of Exchange Rate Forecasting Using Deep Learning-Based Neural Network Models.

11. Optimal Selection of Features Using Deep Learning-Based Optimization Algorithm for Classification.

12. An Enhanced Image Dehazing Procedure Using CLAHE and Guided Filter.

最近チェックした商品