An Introduction to Metric Spaces

個数:
電子版価格
¥7,433
  • 電子版あり

An Introduction to Metric Spaces

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9780367493493
  • DDC分類 514.325

Full Description

This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications.

Some of the noteworthy features of this book include

· Diagrammatic illustrations that encourage readers to think geometrically

· Focus on systematic strategy to generate ideas for the proofs of theorems

· A wealth of remarks, observations along with a variety of exercises

· Historical notes and brief biographies appearing throughout the text

Contents

Contents

Preface ix

A Note to the Reader xiii

Authors xv

1 Set Theory 1

1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9

1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9

1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13

1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16

1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24

1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26

1.3.3 Images of sets under functions . . . . . . . . . . . . . 32

1.3.4 Inverse images of sets under functions . . . . . . . . . 36

1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Metric Spaces 55

2.1 Review of Real Number System and Absolute Value . . . . . 55

2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57

2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64

2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96

2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97

2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101

2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104

2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112

2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3 Complete Metric Spaces 129

3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130

3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131

3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139

3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143

3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145

3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147

3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147

3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148

3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149

3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149

3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151

3.5.3 Applications of Baire category theorem . . . . . . . . 153

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Compact Metric Spaces 161

4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161

4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165

4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169

4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172

4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5 Connected Spaces 183

5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185

5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 Continuity 195

6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195

6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197

6.2.1 Equivalent definitions of continuity and other

characterizations . . . . . . . . . . . . . . . . . . . . . 202

6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210

6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217

6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224

6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229

6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237

6.6 Equicontinuity and Arzela-Ascoli's Theorem . . . . . . . . . 242

6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245

6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7 Banach Fixed Point Theorem and Its Applications 255

7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255

7.2 Applications of Banach Contraction Principle . . . . . . . . . 260

7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260

7.2.2 Solution of systemof linear algebraic equations . . . . 261

7.2.3 Picard existence theorem for differential equations . . 264

7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267

7.2.5 Solutions of initial value and boundary value

problems . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273

Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Appendix A 277

Bibliography 281

Index 283

最近チェックした商品