Disruptive Trends in Computer Aided Diagnosis (Chapman & Hall/crc Computational Intelligence and Its Applications)

個数:

Disruptive Trends in Computer Aided Diagnosis (Chapman & Hall/crc Computational Intelligence and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 196 p.
  • 言語 ENG
  • 商品コード 9780367493400
  • DDC分類 616.0750285

Full Description

Disruptive Trends in Computer Aided Diagnosis collates novel techniques and methodologies in the domain of content based image classification and deep learning/machine learning techniques to design efficient computer aided diagnosis architecture. It is aimed to highlight new challenges and probable solutions in the domain of computer aided diagnosis to leverage balancing of sustainable ecology.

The volume focuses on designing efficient algorithms for proposing CAD systems to mitigate the challenges of critical illnesses at an early stage. State-of-the-art novel methods are explored for envisaging automated diagnosis systems thereby overriding the limitations due to lack of training data, sample annotation, region of interest identification, proper segmentation and so on. The assorted techniques addresses the challenges encountered in existing systems thereby facilitating accurate patient healthcare and diagnosis.

Features:




An integrated interdisciplinary approach to address complex computer aided diagnosis problems and limitations.




Elucidates a rich summary of the state-of-the-art tools and techniques related to automated detection and diagnosis of life threatening diseases including pandemics.




Machine learning and deep learning methodologies on evolving accurate and precise early detection and medical diagnosis systems.




Information presented in an accessible way for students, researchers and medical practitioners.

The volume would come to the benefit of both post-graduate students and aspiring researchers in the field of medical informatics, computer science and electronics and communication engineering. In addition, the volume is also intended to serve as a guiding factor for the medical practitioners and radiologists in accurate diagnosis of diseases.

Contents

1. Evolution of Computer Aided Diagnosis: The Inception and Progress

2. Computer Aided Diagnosis for a Sustainable World

3. Applications of Computer Aided Diagnosis Techniques for a Sustainable World

4. Applications of Generative Adversarial Network on Computer Aided Diagnosis

5. A Critical Review of Machine Learning Techniques for Diagnosing the Corona Virus Disease (COVID- 19)

6. Cardiac Health Assessment Using ANN in Diabetic Population

7. Efficient, Accurate and Early Detection of Myocardial Infarction Using Machine Learning

8. Diagnostics and Decision Support for Cardiovascular System: A Tool Based on PPG Signature

9. ARIMA Prediction Model Based Forecasting for COVID- 19 Infected and Recovered Cases

10. Conclusion

最近チェックした商品