Parameter Redundancy and Identifiability (Chapman & Hall/crc Interdisciplinary Statistics)

個数:

Parameter Redundancy and Identifiability (Chapman & Hall/crc Interdisciplinary Statistics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9780367493219
  • DDC分類 519.544

Full Description

Statistical and mathematical models are defined by parameters that describe different characteristics of those models. Ideally it would be possible to find parameter estimates for every parameter in that model, but, in some cases, this is not possible. For example, two parameters that only ever appear in the model as a product could not be estimated individually; only the product can be estimated. Such a model is said to be parameter redundant, or the parameters are described as non-identifiable. This book explains why parameter redundancy and non-identifiability is a problem and the different methods that can be used for detection, including in a Bayesian context.

Key features of this book:




Detailed discussion of the problems caused by parameter redundancy and non-identifiability



Explanation of the different general methods for detecting parameter redundancy and non-identifiability, including symbolic algebra and numerical methods



Chapter on Bayesian identifiability



Throughout illustrative examples are used to clearly demonstrate each problem and method. Maple and R code are available for these examples



More in-depth focus on the areas of discrete and continuous state-space models and ecological statistics, including methods that have been specifically developed for each of these areas

This book is designed to make parameter redundancy and non-identifiability accessible and understandable to a wide audience from masters and PhD students to researchers, from mathematicians and statisticians to practitioners using mathematical or statistical models.

Contents

1. Introduction
2. Problems With Parameter Redundancy
3. Parameter Redundancy and Identifiability Definitions and Theory
4. Practical General Methods for Detecting Parameter Redundancy and Identifiability
5. Detecting Parameter Redundancy and Identifiability in Complex Models
6. Bayesian Identifiability
7. Identifiability in Continuous State-Space Models
8. Identifiability in Discrete State-Space Models
9. Detecting Parameter Redundancy in Ecological Models
10. Concluding Remarks
Appendix A. Maple Code
Appendix B. Winbugs and R Code

最近チェックした商品