統計的推論の理論(テキスト)<br>Theory of Statistical Inference (Chapman & Hall/crc Texts in Statistical Science)

個数:
電子版価格
¥23,105
  • 電子版あり

統計的推論の理論(テキスト)
Theory of Statistical Inference (Chapman & Hall/crc Texts in Statistical Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 470 p.
  • 言語 ENG
  • 商品コード 9780367488758
  • DDC分類 519.54

Full Description

Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role.

The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test.

Features




This volume includes treatment of linear and nonlinear regression models, ANOVA models, generalized linear models (GLM) and generalized estimating equations (GEE).



An introduction to decision theory (including risk, admissibility, classification, Bayes and minimax decision rules) is presented. The importance of this sometimes overlooked topic to statistical methodology is emphasized.



The volume emphasizes throughout the important role that can be played by group theory and invariance in statistical inference.



Nonparametric (rank-based) methods are derived by the same principles used for parametric models and are therefore presented as solutions to well-defined mathematical problems, rather than as robust heuristic alternatives to parametric methods.



Each chapter ends with a set of theoretical and applied exercises integrated with the main text. Problems involving R programming are included.



Appendices summarize the necessary background in analysis, matrix algebra and group theory.

Contents

1 Distribution Theory 2 Multivariate Distributions 3 Statistical Models 4 Methods of Estimation 5 Hypothesis Testing 6 Linear Models 7 Decision Theory 8 Uniformly Minimum Variance Unbiased (UMVU) Estimation 9 Group Structure and Invariant Inference 10 The Neyman-Pearson Lemma 11 Limit Theorems 12 Large Sample Estimation - Basic Principles 13 Asymptotic Theory for Estimating Equations 14 Large Sample Hypothesis Testing A Parametric Classes of Densities B Topics in Linear Algebra C Topics in Real Analysis and Measure Theory D Group Theory

最近チェックした商品