IoTインフラのための深層学習<br>Deep Learning for Internet of Things Infrastructure

個数:

IoTインフラのための深層学習
Deep Learning for Internet of Things Infrastructure

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9780367457334
  • DDC分類 004.678

Full Description

This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of deep learning (DL)-based data analytics of IoT (Internet of Things) infrastructures. Deep Learning for Internet of Things Infrastructure addresses emerging trends and issues on IoT systems and services across various application domains. The book investigates the challenges posed by the implementation of deep learning on IoT networking models and services. It provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT. The book also explores new functions and technologies to provide adaptive services and intelligent applications for different end users.

FEATURES




Promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of DL-based data analytics of IoT infrastructures



Addresses emerging trends and issues on IoT systems and services across various application domains



Investigates the challenges posed by the implementation of deep learning on IoT networking models and services



Provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT



Explores new functions and technologies to provide adaptive services and intelligent applications for different end users

Uttam Ghosh is an Assistant Professor in the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA.

Mamoun Alazab is an Associate Professor in the College of Engineering, IT and Environment at Charles Darwin University, Australia.

Ali Kashif Bashir is a Senior Lecturer/Associate Professor and Program Leader of BSc (H) Computer Forensics and Security at the Department of Computing and Mathematics, Manchester Metropolitan University, United Kingdom.

Al-Sakib Khan Pathan is an Adjunct Professor of Computer Science and Engineering at the Independent University, Bangladesh.

Contents

1. Data Caching at Fog Nodes under IoT Networks: Review of Machine Learning Approaches 2. ECC-Based Privacy-Preserving Mechanisms Using Deep Learning for Industrial IoT: A State-of-the-Art Approaches 3. Contemporary Developments and Technologies in Deep Learning-Based IoT 4. Deep Learning-Assisted Vehicle Counting for Intersection and Traffic Management in Smart Cities 5. Toward Rapid Development and Deployment of Machine Learning Pipelines across Cloud-Edge 6. Category Identification Technique by a Semantic Feature Generation Algorithm 7. Role of Deep Learning Algorithms in Securing Internet of Things Applications 8. Deep Learning and IoT in Ophthalmology 9. Deep Learning in IoT-Based Healthcare Applications 10. Authentication and Access Control for IoT Devices and Its Applications 11. Deep Neural Network-Based Security Model for IoT Device Network

最近チェックした商品