社会科学データ分析のための応用正規化手法<br>Applied Regularization Methods for the Social Sciences (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

個数:
  • ポイントキャンペーン

社会科学データ分析のための応用正規化手法
Applied Regularization Methods for the Social Sciences (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

  • ウェブストア価格 ¥25,313(本体¥23,012)
  • Chapman & Hall/CRC(2022/03発売)
  • 外貨定価 US$ 115.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,150pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 297 p.
  • 言語 ENG
  • 商品コード 9780367408787
  • DDC分類 300.151

Full Description

Researchers in the social sciences are faced with complex data sets in which they have relatively small samples and many variables (high dimensional data). Unlike the various technical guides currently on the market, Applied Regularization Methods for the Social Sciences provides and overview of a variety of models alongside clear examples of hands-on application. Each chapter in this book covers a specific application of regularization techniques with a user-friendly technical description, followed by examples that provide a thorough demonstration of the methods in action.

Key Features:

Description of regularization methods in a user friendly and easy to read manner
Inclusion of regularization-based approaches for a variety of statistical analyses commonly used in the social sciences, including both univariate and multivariate models
Fully developed extended examples using multiple software packages, including R, SAS, and SPSS
Website containing all datasets and software scripts used in the examples
Inclusion of both frequentist and Bayesian regularization approaches
Application exercises for each chapter that instructors could use in class, and independent researchers could use to practice what they have learned from the book

Contents

1. Introduction. 2. Theoretical underpinnings of regularization methods. 3. Regularization methods for linear models. 4. Regularization methods for generalized linear models. 5. Regularization methods for multivariate linear models. 6. Regularization methods for cluster analysis and principal components analysis. 7. Regularization methods for latent variable models. 8. Regularization methods for multilevel models. 9. Advanced topics in feature selection.

最近チェックした商品