最新応用のためのドメイン固有コンピュータアーキテクチャ:機械学習とニューラルネットワーク<br>Domain-Specific Computer Architectures for Emerging Applications : Machine Learning and Neural Networks

個数:
  • ポイントキャンペーン

最新応用のためのドメイン固有コンピュータアーキテクチャ:機械学習とニューラルネットワーク
Domain-Specific Computer Architectures for Emerging Applications : Machine Learning and Neural Networks

  • ウェブストア価格 ¥30,553(本体¥27,776)
  • Chapman & Hall/CRC(2024/06発売)
  • 外貨定価 US$ 140.00
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 1,385pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 402 p.
  • 言語 ENG
  • 商品コード 9780367374532
  • DDC分類 004.22

Full Description

With the end of Moore's Law, domain-specific architecture (DSA) has become a crucial mode of implementing future computing architectures. This book discusses the system-level design methodology of DSAs and their applications, providing a unified design process that guarantees functionality, performance, energy efficiency, and real-time responsiveness for the target application.

DSAs often start from domain-specific algorithms or applications, analyzing the characteristics of algorithmic applications, such as computation, memory access, and communication, and proposing the heterogeneous accelerator architecture suitable for that particular application. This book places particular focus on accelerator hardware platforms and distributed systems for various novel applications, such as machine learning, data mining, neural networks, and graph algorithms, and also covers RISC-V open-source instruction sets. It briefly describes the system design methodology based on DSAs and presents the latest research results in academia around domain-specific acceleration architectures.

Providing cutting-edge discussion of big data and artificial intelligence scenarios in contemporary industry and typical DSA applications, this book appeals to industry professionals as well as academicians researching the future of computing in these areas.

Contents

Preface. 1 Overview of Domain‑Specific Computing. 2 Machine Learning Algorithms and Hardware Accelerator Customization. 3 Hardware Accelerator Customization for Data Mining Recommendation Algorithms. 4 Customization and Optimization of Distributed Computing Systems for Recommendation Algorithms. 5 Hardware Customization for Clustering Algorithms. 6 Hardware Accelerator Customization Techniques for Graph Algorithms. 7 Overview of Hardware Acceleration Methods for Neural Network Algorithms. 8 Customization of FPGA‑Based Hardware Accelerators for Deep Belief Networks. 9 FPGA‑Based Hardware Accelerator Customization for Recurrent Neural Networks. 10 Hardware Customization/Acceleration Techniques for Impulse Neural Networks. 11 Accelerators for Big Data Genome Sequencing. 12 RISC‑V Open Source Instruction Set and Architecture. 13 Compilation Optimization Methods in the Customization of Reconfigurable Accelerators Index.

最近チェックした商品