不完全データ取り扱いのための統計学的手法(第2版)<br>Statistical Methods for Handling Incomplete Data (2ND)

個数:
電子版価格
¥10,396
  • 電子版あり

不完全データ取り扱いのための統計学的手法(第2版)
Statistical Methods for Handling Incomplete Data (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 380 p.
  • 言語 ENG
  • 商品コード 9780367280543
  • DDC分類 519.54

Full Description

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Features




Uses the mean score equation as a building block for developing the theory for missing data analysis



Provides comprehensive coverage of computational techniques for missing data analysis



Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation



Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data



Describes a survey sampling application



Updated with a new chapter on Data Integration



Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation

The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

Contents

1. Introduction
2. Likelihood-based Approach
3. Computation
4. Imputation
5. Multiple Imputation
6. Fractional Imputation
7. Propensity Scoring Approach
8. Nonignorable Missing Data
9. Longitudinal and Clustered Data
10. Application to Survey Sampling
11. Data Integration
12. Advanced Topics

最近チェックした商品