Wavelet Based Approximation Schemes for Singular Integral Equations

個数:
電子版価格
¥14,147
  • 電子版あり
  • ポイントキャンペーン

Wavelet Based Approximation Schemes for Singular Integral Equations

  • ウェブストア価格 ¥49,737(本体¥45,216)
  • CRC Press(2020/09発売)
  • 外貨定価 US$ 225.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,260pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9780367199173
  • DDC分類 515.45

Full Description

Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It's main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences.

Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.

Contents

Introduction

Singular integral equation

MRA of Function Spaces

Multiresolution analysis of L2(R)

Multiresolution analysis of L2([a, b] ⊂ R)

Others

Approximations in Multiscale Basis

Multiscale approximation of functions

Sparse approximation of functions in higher dimensions

Moments

Quadrature rules

Multiscale representation of differential operators

Representation of the derivative of a function in LMW basis

Multiscale representation of integral operators

Estimates of local Holder indices

Error estimates in the multiscale approximation

Nonlinear/Best n-term approximation

Weakly Singular Kernels

Existence and uniqueness

Logarithmic singular kernel

Kernels with algebraic singularity

An Integral Equation with Fixed Singularity

Method based on scale functions in Daubechies family

Cauchy Singular Kernels

Prerequisites

Basis comprising truncated scale functions in Daubechies family

Multiwavelet family

Hypersingular Kernels

Finite part integrals involving hypersingular functions

Existing methods

Reduction to Cauchy singular integro-differential equation

Method based on LMW basis

最近チェックした商品