環境データのための空間線形モデル<br>Spatial Linear Models for Environmental Data (Chapman & Hall/crc Applied Environmental Statistics)

個数:
電子版価格
¥18,443
  • 電子版あり
  • ポイントキャンペーン

環境データのための空間線形モデル
Spatial Linear Models for Environmental Data (Chapman & Hall/crc Applied Environmental Statistics)

  • ウェブストア価格 ¥25,313(本体¥23,012)
  • Chapman & Hall/CRC(2024/04発売)
  • 外貨定価 US$ 115.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,150pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9780367183349
  • DDC分類 550.151953

Full Description

Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master's level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions.

Topics covered include:

Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran's I, and Geary's c.
Ordinary and generalized least squares regression methods and their application to spatial data.
Suitable parametric models for the mean and covariance structure of geostatistical and areal data.
Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters.
Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems.

All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor's FTP site supplied by the publisher.

Contents

Preface 1. Introduction 2. An Introduction to Covariance Structures for Spatial Linear Models 3. Exploratory Spatial Data Analysis 4. Provisional Estimation of the Mean Structure by Ordinary Least Squares 5. Generalized Least Squares Estimation of the Mean Structure 6. Parametric Covariance Structures for Geostatistical Models 7. Parametric Covariance Structures for Spatial-Weights Linear Models 8. Likelihood-Based Inference 9. Spatial Prediction 10. Spatial Sampling Design 11. Analysis and Design of Spatial Experiments 12. Extensions Appendix A: Some Matrix Results

最近チェックした商品