Numerical Mathematics and Computing (7TH)

個数:

Numerical Mathematics and Computing (7TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 704 p.
  • 言語 ENG
  • 商品コード 9780357670842
  • DDC分類 518.0285

Full Description

Authors Ward Cheney and David Kincaid show students of science and engineering the potential computers have for solving numerical problems and give them ample opportunities to hone their skills in programming and problem solving. NUMERICAL MATHEMATICS AND COMPUTING, 7th Edition also helps students learn about errors that inevitably accompany scientific computations and arms them with methods for detecting, predicting, and controlling these errors.

Contents

1. MATHEMATICAL PRELIMINARIES AND FLOATING-POINT REPRESENTATION.
Introduction, Mathematical Preliminaries. Floating-Point Representation. Loss of Significance.
2. LINEAR SYSTEMS.
Naive Gaussian Elimination. Gaussian Elimination with Scaled Partial Pivoting. Tridiagonal and Banded Systems.
3. NONLINEAR EQUATIONS.
Bisection Method. Newton's Method, Secant Method.
4. INTERPOLATION AND NUMBERICAL DIFFERENTIATION.
Polynomial Interpolation. Errors in Polynomial Interpolation. Estimating Derivatives and Richardson Extrapolation.
5. NUMERICAL INTEGRATION.
Trapezoid Method. Romberg Algorithm. Simpson's Rules and Newton-Cotes Rules. Gaussian Quadrature Formulas.
6. SPLINE FUNCTIONS.
First-Degree and Second-Degree Splines. Natural Cubic Splines. B Splines: Interpolation and Approximation.
7. INITIAL VALUES PROBLEMS.
Taylor Series Methods. Runge-Kutta Methods. Adaptive Runge-Kutta and Multistep Methods. Methods for First and Higher-Order Systems. Adams-Bashforth-Moulton Methods.
8. MORE ON LINEAR SYSTEMS.
Matrix Factorizations. Eigenvalues and Eigenvectors. Power Method. Iterative Solutions of Linear Systems.
9. LEAST SQUARES METHODS AND FOURIER SERIES.
Method of Least Squares. Orthogonal Systems and Chebyshev Polynomials. Examples of the Least-Squares Principle. Fourier Series.
10. MONTE CARLO METHODS AND SIMULATION.
Random Numbers. Estimation of Areas and Volumes by Monte Carlo Techniques. Simulation.
11. BOUNDARY-VALUE PROBLEMS.
Shooting Method. A Discretization Method.
12. PARTIAL DIFFERENTIAL EQUATIONS.
Parabolic Problems. Hyperbolic Problems. Elliptic Problems.
13. MINIMIZATION OF FUNTIONS.
One-Variable Case. Multivariable Case.
14. LINEAR PROGRAMMING PROBLEMS.
Standard Forms and Duality. Simplex Method, Inconsistent Linear Systems.
APPENDIX A. ADVICE ON GOOD PROGRAMMING PRACTICES.
Programming Suggestions.
APPENDIX B. REPRESENTATION OF NUMBERS IN DIFFERENT BASES.
Representation of Numbers in Different Bases.
APPENDIX C. ADDITIONAL DETAILS ON IEEE FLOATING-POINT ARITHMETIC.
More on IEEE Standard Floating-Point Arithmetic.
APPENDIX D. LINEAR ALGEBRA CONCEPTS AND NOTATION.
Elementary Concepts.
ANSWERS FOR SELECTED EXERCISES.
BIBLIOGRAPHY.
INDEX.

最近チェックした商品