Data Analytics for Social Microblogging Platforms (Hybrid Computational Intelligence for Pattern Analysis and Understanding)

個数:
電子版価格
¥27,659
  • 電子版あり

Data Analytics for Social Microblogging Platforms (Hybrid Computational Intelligence for Pattern Analysis and Understanding)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9780323917858
  • DDC分類 006.752

Full Description

Data Analysis for Social Microblogging Platforms explores the nature of microblog datasets, also covering the larger field which focuses on information, data and knowledge in the context of natural language processing. The book investigates a range of significant computational techniques which enable data and computer scientists to recognize patterns in these vast datasets, including machine learning, data mining algorithms, rough set and fuzzy set theory, evolutionary computations, combinatorial pattern matching, clustering, summarization and classification. Chapters focus on basic online micro blogging data analysis research methodologies, community detection, summarization application development, performance evaluation and their applications in big data.

Contents

Section 1: Introduction of Intelligent Information Filtering and Organisation Systems for Social Microblogging Sites
1. Introduction to Microblogging Sites
2. Data structures and data storage
3. Data Collection using Twitter API

Section 2: Microblogging dataset Applications and Implications
4. Brief overview of existing algorithms and Applications
Attribute Selection Methods - Filter Method, Wrapper Method, Other attribute selection algorithms
5. Spam detection - Spam detection in OSM - Attribute selection for spam detection
6.  Summarization - Automatic Document Summarization, Summarization of microblogs, Comparing algorithms for microblog summarization, Summarization Validation
7. Cluster Analysis, Clustering Algorithms, Partition based Clustering, Hierarchical Clustering, Density-based Clustering, Graph clustering algorithms, Cluster Validation Indices, Clustering in Online Social Microblogging Sites

Section 3: Attribute Selection to Improve Spam Classification
8. Introduction of Attribute Selection to Improve Spam Classification
9. Attribute Selection Based in Basics of Rough Set Theory and Attribute selection algorithm.
10. Experimental Dataset Description
11. Evaluating performance and Evaluation measures
12. Fake news, scams, recruiting by terrorist or criminal organizations

Section 4: Microblog Summarization
13. Introduction of Microblog Summarization
14. Base summarization algorithms
15. Unsupervised ensemble summarization approach
16. Supervised ensemble summarisation approach
17. Experiments and results and Performance analysis
18. Demonstrating summarization examples

Section 5: Microblog Clustering
19. Introduction of Microblog Clustering
Experimental Dataset - will be posted on Mendeley and link included at end of Chapter 19
20. Graph Based Clustering Technique
21. Genetic Algorithm based Clustering
22. Clustering based on Feature Selection
23. Clustering Microblogs using Dimensionality Reduction
24. Evaluating performance and result Analysis

Section 6: Conclusion and Future Directions on Social Microblogging Sites

最近チェックした商品