Machine Learning for Safety-Critical Applications : Opportunities, Challenges, and a Research Agenda

個数:
  • 予約
  • ポイントキャンペーン

Machine Learning for Safety-Critical Applications : Opportunities, Challenges, and a Research Agenda

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 82 p.
  • 言語 ENG
  • 商品コード 9780309726665

Full Description

Advances in artificial intelligence, and specifically in machine learning, are enabling new capabilities across nearly every sector of the economy. Many of these applications - such as automated vehicles, the power grid, or surgical robots - are safety critical: where malfunctions can result in harm to people, the environment, or property. While machine learning is already being deployed to enhance the capabilities of some physical systems, extending the rigorous practices of safety engineering to include machine learning components brings significant challenges.

Machine Learning for Safety-Critical Applications explores ways to safely integrate machine learning into physical systems and presents research priorities for improving safety, testing, and evaluation. This report finds that designing machine learning algorithms in a way that aligns with safety engineering standards will require changes in research, training, and engineering practice - as well as a shift away from focusing on algorithmic performance in isolation.

Table of Contents

Front Matter
Summary
1 Engineering Safety-Critical Systems in the Age of Machine Learning
2 State of the Art, Promises, and Risks of Machine Learning
3 System Engineering with Machine Learning Components for Safety-Critical Applications
4 A Research Agenda to Bridge Machine Learning and Safety Engineering
5 Societal Considerations to Build Public Understanding and Confidence in Safety-Critical Systems with Machine Learning Components
Appendix A: Statement of Task
Appendix B: Briefings to the Committee
Appendix C: Committee Member Biographical Information