Frontiers in Massive Data Analysis

個数:

Frontiers in Massive Data Analysis

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9780309287784
  • DDC分類 005.74

Full Description

Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data.

Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale—terabytes and petabytes—is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge—from computer science, statistics, machine learning, and application disciplines—that must be brought to bear to make useful inferences from massive data.

Table of Contents

Front Matter
Summary
1 Introduction
2 Massive Data in Science, Technology, Commerce, National Defense, Telecommunications, and Other Endeavors
3 Scaling the Infrastructure for Data Management
4 Temporal Data and Real-Time Algorithms
5 Large-Scale Data Representations
6 Resources, Trade-offs, and Limitations
7 Building Models from Massive Data
8 Sampling and Massive Data
9 Human Interaction with Data
10 The Seven Computational Giants of Massive Data Analysis
11 Conclusions
Appendixes
Appendix A: Acronyms
Appendix B: Biographical Sketches of Committee Members

Contents

1 Front Matter; 2 Summary; 3 1 Introduction; 4 2 Massive Data in Science, Technology, Commerce, National Defense, Telecommunications, and Other Endeavors; 5 3 Scaling the Infrastructure for Data Management; 6 4 Temporal Data and Real-Time Algorithms; 7 5 Large-Scale Data Representations; 8 6 Resources, Trade-offs, and Limitations; 9 7 Building Models from Massive Data; 10 8 Sampling and Massive Data; 11 9 Human Interaction with Data; 12 10 The Seven Computational Giants of Massive Data Analysis; 13 11 Conclusions; 14 Appendixes; 15 Appendix A: Acronyms; 16 Appendix B: Biographical Sketches of Committee Members