フェミニズムのためのデータサイエンスと倫理<br>Data Feminism

個数:

フェミニズムのためのデータサイエンスと倫理
Data Feminism

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9780262547185
  • DDC分類 305.42

Full Description

Cutting edge strategies for thinking about data science and data ethics through an intersectional feminist lens.

"Without ever finger-wagging, Data Feminism reveals inequities and offers a way out of a broken system in which the numbers are allowed to lie."—WIRED

Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic.

In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever "speak for themselves."

Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Contents

Acknowledgments ix
Introduction: Why Data Science Needs Feminism 1
1 The Power Chapter 21
Principle: Examine Power
2 Collect, Analyze, Imagine, Teach 49
Principle: Challenge Power
3 On Rational, Scientific, Objective Viewpoints from Mythical, Imaginary, Impossible Standpoints 73
Principle: Elevate Emotion and Embodiment
4 "What Gets Counted Counts" 97
Principle: Rethink Binaries and Hierarchies
5 Unicorns, Janitors, Ninjas, Wizards, and Rock Stars 125
Principle: Embrace Pluralism
6 The Numbers Don't Speak for Themselves 149
Principle: Consider Context
7 Show Your Work 173
Principle: Make Labor Visible
Conclusion: Now Let's Multiply 203
Our Values and Our Metrics for Holding Ourselves Accountable 215
Auditing Data Feminism, by Isabel Carter 223
Acknowledgment of Community Organizations 225
Figure Credits 227
Notes 235
Name Index 303
Subject Index 307

最近チェックした商品