AIプレーブック:ビジネス実用化のための機械学習のツボ<br>The AI Playbook : Mastering the Rare Art of Machine Learning Deployment

個数:
電子版価格
¥5,075
  • 電子版あり

AIプレーブック:ビジネス実用化のための機械学習のツボ
The AI Playbook : Mastering the Rare Art of Machine Learning Deployment

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9780262048903
  • DDC分類 658.05

Full Description

In his bestselling first book, Eric Siegel explained how machine learning works. Now, in The AI Playbook, he shows how to capitalize on it.

"Eric Siegel delivers a robust primer on machine learning, the key mechanism in AI. A forward-looking, practical book and a must-read for anyone in the information economy."
—Scott Galloway, NYU Stern Professor of Marketing; bestselling author of The Four

"An antidote to today's relentless AI hype—why some AI initiatives thrive while others fail and what it takes for companies and people to succeed."
—Charles Duhigg, author of bestsellers The Power of Habit and Smarter Faster Better

The greatest tool is the hardest to use. Machine learning is the world's most important general-purpose technology—but it's notoriously difficult to launch. Outside Big Tech and a handful of other leading companies, machine learning initiatives routinely fail to deploy, never realizing value. What's missing? A specialized business practice suitable for wide adoption. In The AI Playbook, bestselling author Eric Siegel presents the gold-standard, six-step practice for ushering machine learning projects, aka predictive AI projects, from conception to deployment. He illustrates the practice with stories of success and of failure, including revealing case studies from UPS, FICO, and prominent dot-coms. This disciplined approach serves both sides: It empowers business professionals, and it establishes a sorely needed strategic framework for data professionals.

Beyond detailing the practice, this book also upskills business professionals—painlessly. It delivers a vital yet friendly dose of semi-technical background knowledge that all stakeholders need to lead or participate in machine learning projects, end to end. This puts business and data professionals on the same page so that they can collaborate deeply, jointly establishing precisely what machine learning is called upon to predict, how well it predicts, and how its predictions are acted upon to improve operations. These essentials make or break each initiative—getting them right paves the way for machine learning's value-driven deployment.

A note from the author:

The buzzword AI can mean many things, but this book is about the most vital use cases of machine learning, those designed to improve large-scale business operations—aka predictive AI or predictive analytics.

Contents

Contents

Series Foreword ix
Foreword by Morgan Vawter xi
Preface: A Brief History of Why Machine Learning Projects Stall xv
Optional FAQ: What This Book Is about and Who It's For xxi

Introduction 1
0 BizML: Six Steps to Machine Learning Deployment 21
1 Value: Establish the Deployment Goal 49
2 Target: Establish the Prediction Goal 63
3 Performance: Establish the Evaluation Metrics 81
4 Fuel: Prepare the Data 113
5 Algorithm: Train the Model 141
6 Launch: Deploy the Model 169
BizML Cheat Sheet 195
Conclusion: ML's Elevator Pitch, Staff, Timeline, Upkeep, and Ethics 197

Acknowledgments 213
About the Author 217
Index 219

最近チェックした商品