統計学を役に立たせる:情報理論とベイズ推論<br>Making Statistics Work : Information Theory and Bayesian Inference

個数:
  • 予約

統計学を役に立たせる:情報理論とベイズ推論
Making Statistics Work : Information Theory and Bayesian Inference

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9780231222037

Full Description

Conventional "frequentist" methods that dominate the field of statistics are generally inconsistent and liable to catastrophic failure in some contexts. These weaknesses have become particularly concerning in relation to crises of replicability and credibility in science. Two alternatives have been proposed to address these flaws—classical Bayesian inference and the principle of maximum entropy—but the connections between them remain controversial.

Making Statistics Work presents a synthesis of information theory and Bayesian inference that addresses these fundamental problems. It provides a consistent, powerful, and flexible framework for data inference based on rigorous logic derived from first principles, allowing for new approaches to many of the unresolved questions of statistics. Duncan K. Foley and Ellis Scharfenaker illustrate the application of this framework and the reasoning behind it across a variety of important statistical problems, such as the inference underlying "gold standard" clinical trials, models of human behavior employed in behavioral finance and psychology, analysis of macroeconomic policy, the relationship of classical probability to quantum physics, and the limitations of linear regression analysis. Making Statistics Work offers new insight into contentious topics, from problems of causality and confounding variables in randomized experimental trials to the foundations of Bayesian and frequentist probability theory.

Contents

Part I. Basic Concepts
1. The Statistical Problem
2. Probability
3. Probabilities and Information
4. Likelihoods and Data
5. Priors and Constraints
6. Organizing Statistical Inference
Part II. Multinomial Models
7. The Binomial Model for Repeated Bernoulli Trials
8. The Multinomial Model
9. The Quantal Response Model
10. Fourier Transforms and Time Series
11. Complex Amplitudes as Multinomial Parameters
Part III. Real Number Observations
12. Real Scalar Statistics
13. Real Vector Statistics
Part IV. Advanced Topics
14. Constrained Maximum Entropy
15. Confounding Variables and Limited Information
Part V. Philosophical and Methodological Puzzles
16. De Finetti's Economic Model of Probability
17. The Frequency Model of Probability
18. Mathematical Appendix
Notes
Bibliography
Author Index
Subject Index

最近チェックした商品