ベイズ科学哲学<br>Bayesian Philosophy of Science

個数:

ベイズ科学哲学
Bayesian Philosophy of Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 414 p.
  • 言語 ENG
  • 商品コード 9780199672110
  • DDC分類 501

Full Description

How should we reason in science? Jan Sprenger and Stephan Hartmann offer a refreshing take on classical topics in philosophy of science, using a single key concept to explain and to elucidate manifold aspects of scientific reasoning. They present good arguments and good inferences as being characterized by their effect on our rational degrees of belief. Refuting the view that there is no place for subjective attitudes in 'objective science', Sprenger and Hartmann explain the value of convincing evidence in terms of a cycle of variations on the theme of representing rational degrees of belief by means of subjective probabilities (and changing them by Bayesian conditionalization). In doing so, they integrate Bayesian inference--the leading theory of rationality in social science--with the practice of 21st century science. Bayesian Philosophy of Science thereby shows how modeling such attitudes improves our understanding of causes, explanations, confirming evidence, and scientific models in general. It combines a scientifically minded and mathematically sophisticated approach with conceptual analysis and attention to methodological problems of modern science, especially in statistical inference, and is therefore a valuable resource for philosophers and scientific practitioners.

Contents

1: Theme: Bayesian Philosophy of Science
2: Variation 1: Confirmation and Induction
3: Variation 2: The No Alternatives Argument
4: Variation 3: Scientific Realism and the No Miracles Argument
5: Variation 4: Learning Conditional Evidence
6: Variation 5: The Problem of Old Evidence
7: Variation 6: Causal Strength
8: Variation 7: Explanatory Power
9: Variation 8: Intertheoretic Reduction
10: Variation 9: Hypothesis Testing and Corroboration
11: Variation 10: Simplicity and Model Selection
12: Variation 11: Scientific Objectivity
13: Variation 12: Models, Idealizations and Objective Chance
Conclusion: The Theme Revisited