Finite Elements in Action : Modeling Quantum Mechanics and Electrodynamics in Nanoscale Systems

個数:
  • 予約
  • ポイントキャンペーン

Finite Elements in Action : Modeling Quantum Mechanics and Electrodynamics in Nanoscale Systems

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9780199563487

Full Description

The central focus of this textbook is the elucidation of the interplay between the principle of stationary action and Schrödinger's equation, and its solution using the finite element method (FEM), a method of solving differential equations, in physical systems whose dimensions are on the order of nanometers. The treatment of the dynamics of electrons in such systems deserves a quantum mechanical description and typical applications at the nanoscale also require the modeling of electrodynamic fields. For instance, nanoscale semiconductor laser design requires the interplay between electrons and photons to be modeled simultaneously.

Aimed at graduate students and researchers in nanoscale systems, materials growth, optoelectronics, engineering, physics, and chemistry, as well as electrical engineers, mechanical engineers, computational scientists, and quantum computer developers, this book explores the development of variational methods and their implementation for several physical examples in the framework of the FEM and addresses issues that are very common in modeling nanoscale systems.

Contents

Part I - The Action Integral in Quantum Mechanics
1: Schrödinger's equation and the action
2: Action, FEM and BCs
3: Element geometries for 2D and 3D
4: Boundary conditions at material interfaces
5: Accidental degeneracy in cubic semiconductor quantum dots
Part II - Quantum Scattering
6: Quantum scattering in 1D revisited
7: 2D quantum waveguides
8: Quantum scattering in 2D waveguides
9: Open domain quantum scattering with sources and absorbers
Part III - Wavefunction Engineering
10: Wavefunction engineering of semiconductor nanostructures
11: Schrödinger-Poisson self-consistency in layered semiconductor nanostructures
Part IV - Steady-state current distributions
12: The Extraordinary Magneto-Resistance effect in metal- semiconductor structures
13: Read-head design based on the EMR effect
Part V - Electrodynamics
14: Fields in electromagnetic waveguides
15: Modeling photonic crystals with Hermite FEM
16: Cavity Electrodynamics and symmetries
17: Dimensional continuation of EM singularities in structures with re-entrant geometry
18: The gauge degree of freedom in Electrodynamics
Part VI - Further applications of FEM
A: Derivation of shape functions using group theory
B: Shape functions for 1D, 2D, and 3D finite elements
C: Hermite Least Squares Data Fitting

最近チェックした商品